学校別大学入試過去問解説(数学)
因数分解 名古屋女子大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^6-7a^3-8$
名古屋女子大学
この動画を見る
因数分解せよ
$a^6-7a^3-8$
名古屋女子大学
京都大学2024年の積分の問題をその場で解きながら解説してみた! #shorts #高校数学 #京都大学
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学2024年の積分の問題をその場で解きながら解説してみた!
この動画を見る
京都大学2024年の積分の問題をその場で解きながら解説してみた!
【高校数学】岐阜大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分84日目~47都道府県制覇への道~【㉗岐阜】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
この動画を見る
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
【高校数学】福井大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分83日目~47都道府県制覇への道~【㉖福井】【毎日17時投稿】
単元:
#積分とその応用#定積分#数学(高校生)#福井大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
この動画を見る
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
意外と間違える!?二次方程式 2024京都府
単元:
#数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$
2024京都府
この動画を見る
方程式を解け
$8x^2=22x$
2024京都府
2024早稲田(教育)循環小数を2進法で表せ
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問
この動画を見る
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問
【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
【高校数学】ワイエルシュトラス置換って何!?毎日積分81日目~47都道府県制覇への道~【㉔三重】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
この動画を見る
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
大学入試の因数分解 2通りで解説 近畿大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^3-3x^2-6x+8$
近畿大学
この動画を見る
因数分解せよ
$x^3-3x^2-6x+8$
近畿大学
【高校数学】京都大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分79日目~47都道府県制覇への道~【㉒京都】【毎日17時投稿】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【京都大学 2024】
$a$は$a≧1$を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$ とする。
$\displaystyle x≧0, \frac{e^x-e^{-x}}{2}≦y, y≦ \frac{e^x+e^{-x}}{2}, y≦a$
次の問いに答えよ。
(1) $D_a$の面積$S_a$を求めよ。
(2) $\displaystyle \lim_{a\to \infty}S_a$を求めよ。
この動画を見る
【京都大学 2024】
$a$は$a≧1$を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$ とする。
$\displaystyle x≧0, \frac{e^x-e^{-x}}{2}≦y, y≦ \frac{e^x+e^{-x}}{2}, y≦a$
次の問いに答えよ。
(1) $D_a$の面積$S_a$を求めよ。
(2) $\displaystyle \lim_{a\to \infty}S_a$を求めよ。
【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
この動画を見る
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
見ただけで何でくくれるかは、わかる。 大学入試の因数分解 秋田大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
秋田大学
この動画を見る
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
秋田大学
大学入試の因数分解 久留米大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^5-a^2b^2(a-b)-b^5$
久留米大学
この動画を見る
因数分解せよ
$a^5-a^2b^2(a-b)-b^5$
久留米大学
ルートの中のルートの中にルートがある。2024中大杉並
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
この動画を見る
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
京都大 2024文系数学
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
この動画を見る
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
サイコロ🎲3回投げる確率 2024明大中野
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1から6の目のサイコロを3回投げる。出た目の数を順にa,b,cとするとき
$(a-1)(b-2)(c-3)=0$を満たす確率を求めよ
2024明治大学付属中野高等学校
この動画を見る
1から6の目のサイコロを3回投げる。出た目の数を順にa,b,cとするとき
$(a-1)(b-2)(c-3)=0$を満たす確率を求めよ
2024明治大学付属中野高等学校
【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
平方根 整数部分と小数部分 2024明大中野
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$
2024明治大学付属中野高等学校
この動画を見る
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$
2024明治大学付属中野高等学校
東大 文系数学 2024
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m
2024東大文系過去問
この動画を見る
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m
2024東大文系過去問
【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
因数分解 2024明大中野
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+3xy+3x-18y-54$
2024明治大学付属中野高等学校
この動画を見る
因数分解せよ
$x^2+3xy+3x-18y-54$
2024明治大学付属中野高等学校
答えの数値で安心する問題 聖マリアンナ医科大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。
聖マリアンナ医科大過去問
この動画を見る
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。
聖マリアンナ医科大過去問
【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
【高校数学】毎日積分72日目~47都道府県制覇への道~【⑯鳥取】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
この動画を見る
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
【高校数学】毎日積分70日目~47都道府県制覇への道~【⑭島根】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
【高校数学】毎日積分69日目~47都道府県制覇への道~【⑬山口】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
この動画を見る
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理
単元:
#大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。