東京大学
頑張れば小中学生にもできる 東大入試問題 数学 Japanese university entrance exam questions Tokyo University
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.
東大過去問
この動画を見る
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.
東大過去問
東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。
(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。
(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
東大過去問
この動画を見る
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。
(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。
(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
東大過去問
小学生の知識で解ける東大入試問題,整数問題 Japanese university entrance exam questions Tokyo University
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
円周上にm個の赤い点とn個の青い点を任意の順序に並べる。これらの点により、円周はm+n個の弧に分けられる。
このとき、これらの弧のうち両端の点の色が異なるものの数は偶数であることを証明せよ。
ただし、$m \geqq 1$,$n \geqq 1$とする。
東大過去問
この動画を見る
円周上にm個の赤い点とn個の青い点を任意の順序に並べる。これらの点により、円周はm+n個の弧に分けられる。
このとき、これらの弧のうち両端の点の色が異なるものの数は偶数であることを証明せよ。
ただし、$m \geqq 1$,$n \geqq 1$とする。
東大過去問