式の計算(整式・展開・因数分解)
これ一瞬で約分出来たらすごくね?
単元:
#算数(中学受験)#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
正答率1%の問題
$\displaystyle\frac{x^6+a^2x^3y}{x^6-a^4y^2}$
この動画を見る
正答率1%の問題
$\displaystyle\frac{x^6+a^2x^3y}{x^6-a^4y^2}$
立教大 整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2002}$を$x^4-1$で割った余りを求めよ.
立教大過去問
この動画を見る
$x^{2002}$を$x^4-1$で割った余りを求めよ.
立教大過去問
頑張れば中学生にも解ける問題
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ a=\sqrt{\dfrac{1!2!3!・・・・・・25!26!}{n}}$が自然数となる最小の自然数$n$である.
そのとき,$a$の末尾に$0$は何個並ぶか.
この動画を見る
$ a=\sqrt{\dfrac{1!2!3!・・・・・・25!26!}{n}}$が自然数となる最小の自然数$n$である.
そのとき,$a$の末尾に$0$は何個並ぶか.
高校範囲?と思わせる慶應義塾高校の問題
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b+c= \frac{1}{3}$ , $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$のとき
(a-1)(b-1)(c-1)=
慶應義塾高等学校
この動画を見る
$a+b+c= \frac{1}{3}$ , $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$のとき
(a-1)(b-1)(c-1)=
慶應義塾高等学校
因数分解の全パターン③【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
この動画を見る
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
【中学数学】因数分解のテクニック~マル秘必殺技~ 3-3【中3数学】
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の式を因数分解せよ
$x^2-24x+60$
この動画を見る
次の式を因数分解せよ
$x^2-24x+60$
暗算でも出せるかな?早くも2022問題。x^2022+x^-2022の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
スッキリだそう
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
この動画を見る
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
【数Ⅰ】数と式:複2次式の因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解しよう。
(1)$x^4+x^2+1$
(2)$x^4+4x^2+16$
この動画を見る
次の式を因数分解しよう。
(1)$x^4+x^2+1$
(2)$x^4+4x^2+16$
【数Ⅰ】数と式:因数分解:a³+b³+c³-3abcの因数分解の利用
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
この動画を見る
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
【数I】中高一貫校問題集3(数式・関数編)6:数と式:多項式:整式の減法の注意点
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A=5x²-2xy+y²、B=-3x²+2xy-4y²であるとき、A-Bを計算しよう。
この動画を見る
A=5x²-2xy+y²、B=-3x²+2xy-4y²であるとき、A-Bを計算しよう。
【数Ⅰ】数と式:整式の加法と減法:整理してから代入する
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A=2x^2+xy-3z、B=-3x^2+2xy+z、C=x^2-3xy+2z$であるとき、$2(2A+B-C)-(A+4A-C)$を計算しよう。
この動画を見る
$A=2x^2+xy-3z、B=-3x^2+2xy+z、C=x^2-3xy+2z$であるとき、$2(2A+B-C)-(A+4A-C)$を計算しよう。
素因数分解3200021
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
素因数分解せよ.
$3200021$
ただし,素因数は3つである.
この動画を見る
素因数分解せよ.
$3200021$
ただし,素因数は3つである.
千葉大 ドゥモアブルの定理
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
①$\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+\alpha$の値を求めよ.
②$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\times(1-\alpha^4)(1-\alpha^5)$
$(1-\alpha^6)$の値を求めよ.
千葉大過去問
この動画を見る
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
①$\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+\alpha$の値を求めよ.
②$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\times(1-\alpha^4)(1-\alpha^5)$
$(1-\alpha^6)$の値を求めよ.
千葉大過去問
早くも2022問題。視聴者が類題を作ってくれました
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を
$(x^{16}+1)(x^8+1)(x^4+1)(x^2+1)(x+1)$で割った余りを求めよ.
この動画を見る
$x^{2022}$を
$(x^{16}+1)(x^8+1)(x^4+1)(x^2+1)(x+1)$で割った余りを求めよ.
山梨大(医)整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.
2020山梨大(医)過去問
この動画を見る
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.
2020山梨大(医)過去問
ただの計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを計算せよ.
$\left(\dfrac{4}{(\sqrt5+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}+1\right)^{48}$
この動画を見る
これを計算せよ.
$\left(\dfrac{4}{(\sqrt5+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}+1\right)^{48}$
ゆる言語学者 水野さん参上
福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
因数分解 因数定理
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解しなさい(有理数係数)
$x^8+x^4+1$
$x^5+x+1$
$x^5+x-1$
この動画を見る
因数分解しなさい(有理数係数)
$x^8+x^4+1$
$x^5+x+1$
$x^5+x-1$
福島大 基本対称式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
この動画を見る
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
ゆる言語学者バーゼル問題に驚く
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
バーゼル問題に関して解説していきます.
この動画を見る
バーゼル問題に関して解説していきます.
どっちがでかい?あれを証明します。
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$51^{100}$ VS $100!$
この動画を見る
どちらが大きいか?
$51^{100}$ VS $100!$
1の5乗根の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^5=1,x \neq 1$である.
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x}+\dfrac{x^4}{1+x^3}$の値を求めよ.
この動画を見る
$x^5=1,x \neq 1$である.
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x}+\dfrac{x^4}{1+x^3}$の値を求めよ.
トルコJr数学オリンピック
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$2x^2+y^2+7=2(x+1)(y+1)$
トルコJr数学オリンピック
この動画を見る
実数解$(x,y)$を求めよ.
$2x^2+y^2+7=2(x+1)(y+1)$
トルコJr数学オリンピック
華麗に解こう
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
この動画を見る
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
自分で考えろ!
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$42\times 37$の計算の様々なやり方に関して解説していきます.
この動画を見る
$42\times 37$の計算の様々なやり方に関して解説していきます.
素因数分解
福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
累乗の桁数
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2^{1000}$は$m$桁
$5^{1000}$は$n$桁
$m+n=\boxed{?}$
この動画を見る
$2^{1000}$は$m$桁
$5^{1000}$は$n$桁
$m+n=\boxed{?}$