2次関数とグラフ
京都府立医大 二次関数の最大値
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m$は自然数の定数である.
$f(x)=-(m+1)x^2+(m^2+3)x$
変数$x$が整数値のみとるときの$f(x)$の最大値を求めよ.
1993京都府立医大過去問
この動画を見る
$m$は自然数の定数である.
$f(x)=-(m+1)x^2+(m^2+3)x$
変数$x$が整数値のみとるときの$f(x)$の最大値を求めよ.
1993京都府立医大過去問
【数Ⅰ】2次関数:放物線y=x²-6x+10をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めましょう。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
この動画を見る
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
指数関数 2次関数 大分大
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
この動画を見る
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
【数Ⅰ】2次関数:関数決定その2! 軸がわかっている場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
軸が直線x=-2で、2点(0,3),(-1,0)を通る。
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
軸が直線x=-2で、2点(0,3),(-1,0)を通る。
【数Ⅰ】2次関数:関数決定その1! 頂点がわかっている場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
頂点が(1,-2)で、点(2,-3)を通る。
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
頂点が(1,-2)で、点(2,-3)を通る。
千葉大 2次方程式の解 整数問題
単元:
#数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
この動画を見る
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
信州大 絶対値のついた2次方程式 相違4実根
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
この動画を見る
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
空間座標の導入!!
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点$P(2,3,4)$に対して
(1)$xy$平面に関して対称な点の座標は( , , )
(2)$yz$平面に関して対称な点の座標は( , , )
(3)$zx$平面に関して対称な点の座標は( , , )
(4)$x$軸平面に関して対称な点の座標は( , , )
(5)$y$軸平面に関して対称な点の座標は( , , )
(6)$z$軸平面に関して対称な点の座標は( , , )
(7)原点平面に関して対称な点の座標は( , , )
この動画を見る
点$P(2,3,4)$に対して
(1)$xy$平面に関して対称な点の座標は( , , )
(2)$yz$平面に関して対称な点の座標は( , , )
(3)$zx$平面に関して対称な点の座標は( , , )
(4)$x$軸平面に関して対称な点の座標は( , , )
(5)$y$軸平面に関して対称な点の座標は( , , )
(6)$z$軸平面に関して対称な点の座標は( , , )
(7)原点平面に関して対称な点の座標は( , , )
【高校数学】二次関数を36分でまとめてみた【解説・授業】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
この動画を見る
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
自治医大 関数の最小値
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
この動画を見る
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
奈良県立医大 長方形の面積の最大値
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
この動画を見る
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
千葉大 放物線と法線
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
この動画を見る
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。
単元:
#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
この動画を見る
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
京都大 絶対値のついた二次関数の共有点 東大数学科院卒 杉山聡
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
この動画を見る
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
島根大(医)指数方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ
(1)
$a,b$が満たす条件
(2)
$b$の値の範囲は?
出典:1996年島根大学医学部 過去問
この動画を見る
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ
(1)
$a,b$が満たす条件
(2)
$b$の値の範囲は?
出典:1996年島根大学医学部 過去問
長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
この動画を見る
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
この動画を見る
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
この動画を見る
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
一橋大 3次方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
この動画を見る
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
この動画を見る
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
大阪大 絶対値のついた二次関数と直線の面積 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
この動画を見る
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
東京水産大 3次関数と2次関数の接する条件 積分 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'82東京水産大学過去問題
$y=x^2(x+5),y=-x^2+a \quad (a \neq 0)$
が接するようなaの値を定め、又そのとき2曲線によって囲まれる面積
この動画を見る
'82東京水産大学過去問題
$y=x^2(x+5),y=-x^2+a \quad (a \neq 0)$
が接するようなaの値を定め、又そのとき2曲線によって囲まれる面積
【高校数学】2次不等式②~連立不等式・基礎と応用~ 2-12【数学Ⅰ】
福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(4)直線群と2次方程式の解、高校2年生
単元:
#数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#2次関数とグラフ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
群馬大/岐阜大 二次関数/二次方程式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#岐阜大学#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。
岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値
この動画を見る
群馬大学過去問題
$y=x^2+ax+2$とA(0,1),B(2,3)を結ぶ線分ABと異なる2点で交わるaの範囲。
岐阜大学過去問題
$mx^2+5(m+1)x+4(m+2)=0$が有理数の解をもつ整数mの値
京大 信州大 整数 2次方程式 高校数学 Japanese university entrance exam questions Kyoto University
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
①$n$と$n^2+2$がともに素数となるような自然数$n$を求めよ。
信州大学過去問題
②$x^2+(2a-1)x+a^2-3a-4=0$が少なくとも1つの正の解をもつ条件。
この動画を見る
京都大学過去問題
①$n$と$n^2+2$がともに素数となるような自然数$n$を求めよ。
信州大学過去問題
②$x^2+(2a-1)x+a^2-3a-4=0$が少なくとも1つの正の解をもつ条件。
福田の一夜漬け数学〜2次関数・異なる実数解の個数〜高校1年生
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}} k$は定数。方程式$|x^2-x-2|=k$ の異なる実数解の
個数を調べよ。
${\Large\boxed{2}} k$は定数。方程式$|x^2-x-2|=2x+k$ の異なる実数解の
個数を調べよ。
この動画を見る
${\Large\boxed{1}} k$は定数。方程式$|x^2-x-2|=k$ の異なる実数解の
個数を調べよ。
${\Large\boxed{2}} k$は定数。方程式$|x^2-x-2|=2x+k$ の異なる実数解の
個数を調べよ。
福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4-2m=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。
${\Large\boxed{2}} x^2+(2-m)x+4-2m=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。
(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
この動画を見る
${\Large\boxed{1}} x^2+(2-m)x+4-2m=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。
${\Large\boxed{2}} x^2+(2-m)x+4-2m=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。
(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
福田の一夜漬け数学〜2次関数・解の存在範囲(2)〜高校1年生
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+2mx-2m+3=0$ が次のような解をもつとき、定数
$m$の値の範囲を求めよ。
(1)2つの解がともに2より大
(2)2つの解がともに2と4の間
${\Large\boxed{2}} x^2+(m-1)x-m^2+2=0$ の1つの解が-2と0の間、
他の解が0と1の間にあるときのmの値の範囲は?
この動画を見る
${\Large\boxed{1}} x^2+2mx-2m+3=0$ が次のような解をもつとき、定数
$m$の値の範囲を求めよ。
(1)2つの解がともに2より大
(2)2つの解がともに2と4の間
${\Large\boxed{2}} x^2+(m-1)x-m^2+2=0$ の1つの解が-2と0の間、
他の解が0と1の間にあるときのmの値の範囲は?