2次関数
最初は誰もがつまづく。二次不等式 数I
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
(1)$x^2 \geqq 0$
(2)$x^2 \leqq 0$
(3)$x^2 > 0$
(4)$x^2 < 0$
この動画を見る
(1)$x^2 \geqq 0$
(2)$x^2 \leqq 0$
(3)$x^2 > 0$
(4)$x^2 < 0$
初めまして 二次不等式
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
不等式を解け
(1) $x-2< 0$
(2) $x(x-2) < 0$
この動画を見る
不等式を解け
(1) $x-2< 0$
(2) $x(x-2) < 0$
福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。
2023東北大学文系過去問
この動画を見る
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。
2023東北大学文系過去問
【数検準2級】高校数学:数学検定準2級2次:問4
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問4. a,bを定数とします。放物線$y=-x^2+4ax+b$ について、次の問いに答えなさい。
(5) 頂点の座標をa,bを用いて表しなさい。この問題は答えだけを書いてください。
(6) 放物線 $y=-x^2$ をx軸方向に1、y軸方向に5だけ平行移動したところ、上の放物線になりました。このとき、a,bの値をそれぞれ求めなさい。
この動画を見る
問4. a,bを定数とします。放物線$y=-x^2+4ax+b$ について、次の問いに答えなさい。
(5) 頂点の座標をa,bを用いて表しなさい。この問題は答えだけを書いてください。
(6) 放物線 $y=-x^2$ をx軸方向に1、y軸方向に5だけ平行移動したところ、上の放物線になりました。このとき、a,bの値をそれぞれ求めなさい。
2次関数の決定【野本さんちのツトムくんがていねいに解説】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
172 次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
(2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
この動画を見る
172 次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
(2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
2次関数の最大と最小条件式つき【野本さんちのツトムくんがていねいに解説】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
この動画を見る
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
スイカに塩 小数と2次方程式 関西大学第一(改)
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2 - 0.001 = 0$
関西大学第一高等学校
この動画を見る
方程式を解け
$x^2 - 0.001 = 0$
関西大学第一高等学校
【迷わず進め!】二次方程式:東京都立八王子東高等学校~全国入試問題解法
単元:
#数学(中学生)#数Ⅰ#数と式#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ (x+1)^2+(x+1)(x+2)+4x+5=0 $を解け.
都立八王子東高校過去問
この動画を見る
2次方程式$ (x+1)^2+(x+1)(x+2)+4x+5=0 $を解け.
都立八王子東高校過去問
等式の変形だけど実は2次〇〇○
単元:
#数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=?$ $(a+b \neq 0)$
$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
この動画を見る
$x=?$ $(a+b \neq 0)$
$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解
単元:
#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。
2023慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。
2023慶應義塾大学医学部過去問
高校入試の頻出問題を手早く解答する動画~全国入試問題解法
単元:
#数学(中学生)#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2-8x+2a+1=0 $の解の1つが$ x=3 $であるとき,
aの値を求めよ.また,もう一つの解を求めなさい.
栃木県高校過去問
この動画を見る
$ x^2-8x+2a+1=0 $の解の1つが$ x=3 $であるとき,
aの値を求めよ.また,もう一つの解を求めなさい.
栃木県高校過去問
慶應義塾高校 2次方程式解け
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(2021-x)(2022-x) =2023 - x$
慶應義塾高等学校
この動画を見る
$(2021-x)(2022-x) =2023 - x$
慶應義塾高等学校
福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
この動画を見る
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
【数検準2級】高校数学:数学検定準2級2次:問1
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次方程式と2次不等式#数学検定#数学検定準2級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問1.
1辺の長さが6mの正方形の形をした花壇Aがあります。花壇Aより縦が 2a m長く、横が a m長い長方形の形をした
花壇Bをつくるとき、次の問いに答えなさい。ただし、a>0とします。
(1) 花壇Bの面積は、花壇Aの面積より何m²大きいですか。aを用いて表しなさい。この問題は答えだけを書いてください。
(2) 花壇Bの面積が花壇Aの面積より72m²大きいとき、aを求めるための方程式をつくり、それを解いてaの値を求めなさい。
この動画を見る
問1.
1辺の長さが6mの正方形の形をした花壇Aがあります。花壇Aより縦が 2a m長く、横が a m長い長方形の形をした
花壇Bをつくるとき、次の問いに答えなさい。ただし、a>0とします。
(1) 花壇Bの面積は、花壇Aの面積より何m²大きいですか。aを用いて表しなさい。この問題は答えだけを書いてください。
(2) 花壇Bの面積が花壇Aの面積より72m²大きいとき、aを求めるための方程式をつくり、それを解いてaの値を求めなさい。
ルートの入っている二次方程式を解け。2023東海
単元:
#数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$2\sqrt 2 x^2 - \sqrt{14}x - \sqrt 2 = 0$
2023東海高等学校
この動画を見る
2次方程式を解け
$2\sqrt 2 x^2 - \sqrt{14}x - \sqrt 2 = 0$
2023東海高等学校
入試問題送って下さった本当にありがとうございました。2023高校入試数学解説100問目 二次方程式 帝京大学高校(改)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$(2x-4)^2 = 8-4(x-2)$
帝京大学高等学校
この動画を見る
方程式を解け
$(2x-4)^2 = 8-4(x-2)$
帝京大学高等学校
【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:本論
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。
場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
この動画を見る
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。
場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。
場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
この動画を見る
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。
場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
この動画を見る
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
【数Ⅰ】2次関数:【難問】2変数関数の最大最小:序章
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(1) xのとりうる値の最大値・最小値を求めよ。
この動画を見る
$x^2-2xy+2y^2=2$ を満たすx,yについて
(1) xのとりうる値の最大値・最小値を求めよ。
2023高校入試数学解説46問目 二次方程式の応用 灘高校 整数問題
単元:
#数学(中学生)#数Ⅰ#数A#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの方程式$x^2+x-n+1 = 0$が整数解をもつとき
$n-2023$の絶対値が最小となる整数nは?
2023 灘高等学校
この動画を見る
xの方程式$x^2+x-n+1 = 0$が整数解をもつとき
$n-2023$の絶対値が最小となる整数nは?
2023 灘高等学校
福田の1.5倍速演習〜合格する重要問題079〜京都大学2018年度理系第3問〜円に内接する四角形の4辺の積の最大
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。
2018京都大学理系過去問
この動画を見る
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。
2018京都大学理系過去問
2023高校入試解説34問目 知らないと損する2次方程式の偶数バージョン 中大杉並
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-6x+4 = 0 $と$y^2 -14y +44 = 0$の解を適当に組み合わせてx-yの値を計算する。その値が有理数になるときx-yの値は?
2023中央大学杉並高等学校
この動画を見る
$x^2-6x+4 = 0 $と$y^2 -14y +44 = 0$の解を適当に組み合わせてx-yの値を計算する。その値が有理数になるときx-yの値は?
2023中央大学杉並高等学校
指数・対数連立不等式 京都府立大
単元:
#2次関数#2次方程式と2次不等式#2次関数とグラフ#指数関数と対数関数#指数関数#対数関数
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
この動画を見る
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
【工夫あり】二次方程式の解を四捨五入!?【一橋大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。
一橋大過去問
この動画を見る
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。
一橋大過去問
中学生でも解ける大学入試問題!【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の二次関数$y=ax^2+bx+c$のグラフが相違なる3点$(a,b),(b,c),(c,a)$を通るものとする。
ただし,$abc≠0$とする。このとき,次の問いに答えよ。
(1)$a$の値を求めよ。
(2)$b,c$の値を求めよ。
早稲田大過去問
この動画を見る
$x$の二次関数$y=ax^2+bx+c$のグラフが相違なる3点$(a,b),(b,c),(c,a)$を通るものとする。
ただし,$abc≠0$とする。このとき,次の問いに答えよ。
(1)$a$の値を求めよ。
(2)$b,c$の値を求めよ。
早稲田大過去問
福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。
2017千葉大学理系過去問
この動画を見る
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。
2017千葉大学理系過去問
2023高校入試解説14問目 2次方程式 渋谷教育学園幕張
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$
2023渋谷教育学園幕張高等学校
この動画を見る
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$
2023渋谷教育学園幕張高等学校
4次方程式が2つの実数解しか持たないということは・・・【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
この動画を見る
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
神奈川県教員採用試験(2021)「解き方は何種類かありそう」 #関数
単元:
#2次関数#その他
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2}{9}+y^2=1$を満たす$x,y$に対し$x+3y^2$の最小値を求めよ
出典:2021年神奈川県教員採用試験
この動画を見る
$\displaystyle \frac{x^2}{9}+y^2=1$を満たす$x,y$に対し$x+3y^2$の最小値を求めよ
出典:2021年神奈川県教員採用試験