図形と計量
参りました。。。気付けば一瞬でした
福田のわかった数学〜高校1年生056〜図形の計量(7)等面四面体の体積
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(7)
4つの面のどれも3辺の長さが
5,6,7の三角形である四面体
(等面四面体)の体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(7)
4つの面のどれも3辺の長さが
5,6,7の三角形である四面体
(等面四面体)の体積を求めよ。
解けそうで解けない三角形の面積 城北
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△OAB=?
*図は動画内参照
城北高等学校
この動画を見る
△OAB=?
*図は動画内参照
城北高等学校
福田のわかった数学〜高校1年生055〜図形の計量(6)正四面体の体積
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(6)
一辺の長さがaの正四面体の体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(6)
一辺の長さがaの正四面体の体積を求めよ。
福田のわかった数学〜高校1年生054〜図形の計量(5)四面体の体積(1)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(5)
四面体ABCDについて、
$AB=8,\ BC=4,\ CD=5,\ DA=8,\ BD=6,\ AC=8$
のとき体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(5)
四面体ABCDについて、
$AB=8,\ BC=4,\ CD=5,\ DA=8,\ BD=6,\ AC=8$
のとき体積を求めよ。
筑駒だけど気付けば一瞬!!
単元:
#算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つの三角形の面積の和=?
*図は動画内参照
筑波大学附属駒場中学校
この動画を見る
2つの三角形の面積の和=?
*図は動画内参照
筑波大学附属駒場中学校
福田のわかった数学〜高校1年生053〜図形の計量(4)三角形の成立条件と最大角
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(4)
三辺の長さが$x^2+x+1, -2x-1, x^2+2x$である三角形の最大角を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(4)
三辺の長さが$x^2+x+1, -2x-1, x^2+2x$である三角形の最大角を求めよ。
福田のわかった数学〜高校1年生052〜図形の計量(3)台形の対角線のなす角
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(3)
右のような台形ABCDがある。(※動画参照)
(1)面積を求めよ。
(2)AC,BDを求めよ。
(3)$\sin\theta$を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(3)
右のような台形ABCDがある。(※動画参照)
(1)面積を求めよ。
(2)AC,BDを求めよ。
(3)$\sin\theta$を求めよ。
福田のわかった数学〜高校1年生051〜図形の計量(2)四角形の対角線と面積
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$図形の計量(2)
四角形ABCDの対角線$AC=x,\ BD=y$のなす角を$\theta$とするとき、
この四角形の面積を$x,\ y,\ \theta$で表せ。
この動画を見る
数学$\textrm{I}$図形の計量(2)
四角形ABCDの対角線$AC=x,\ BD=y$のなす角を$\theta$とするとき、
この四角形の面積を$x,\ y,\ \theta$で表せ。
【三角比 総まとめ!】三角比で必要な知識を「全て」まとめて解説!〔高校数学 数学〕
単元:
#数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
三角比で必要な知識を全てまとめました。
この動画を見る
三角比で必要な知識を全てまとめました。
福田のわかった数学〜高校1年生050〜図形の計量(1)内接四角形の面積
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(1)
$AB=3,\ BC=5,\ CD=5,\ DA=6$である
円に内接する四角形ABCDにおいて、
ACの長さ、四角形ABCDの面積Sを求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(1)
$AB=3,\ BC=5,\ CD=5,\ DA=6$である
円に内接する四角形ABCDにおいて、
ACの長さ、四角形ABCDの面積Sを求めよ。
大阪桐蔭 角の和
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
赤の角の和は何度?
*図は動画内参照
大阪桐蔭高等学校
この動画を見る
赤の角の和は何度?
*図は動画内参照
大阪桐蔭高等学校
福田のわかった数学〜高校1年生049〜三角形への応用(6)正弦定理の捉え方
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(6)
$\triangle ABC$において、
$\sin A:\sin B:\sin C=3:5:7$
のとき、最も大きい角の大きさは?
この動画を見る
数学$\textrm{I}$ 三角形への応用(6)
$\triangle ABC$において、
$\sin A:\sin B:\sin C=3:5:7$
のとき、最も大きい角の大きさは?
日大山形 (改)円と角 2通りで解説
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
日本大学山形高等学校(改)
この動画を見る
$\angle x=?$
*図は動画内参照
日本大学山形高等学校(改)
樟南高校 知っていれば一瞬!!
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
樟南高等学校
この動画を見る
x=?
*図は動画内参照
樟南高等学校
三重高校 面倒な計算はいらない。
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
P,Q,Rはそれぞれの円の中心
円Rの半径=10
RQ=?
*図は動画内参照
三重高等学校
この動画を見る
P,Q,Rはそれぞれの円の中心
円Rの半径=10
RQ=?
*図は動画内参照
三重高等学校
福田のわかった数学〜高校1年生048〜三角形への応用(5)三角形を解く
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(5)
$\triangle ABC$において、$a=2,\ b=2\sqrt2,\ A=30°$
のとき、残りの辺と角の大きさを求めよ。
この動画を見る
数学$\textrm{I}$ 三角形への応用(5)
$\triangle ABC$において、$a=2,\ b=2\sqrt2,\ A=30°$
のとき、残りの辺と角の大きさを求めよ。
【単位円はこう使う!】三角不等式での単位円の使い方を4ステップで解説!〔高校数学 数学〕
福田のわかった数学〜高校1年生第47回。三角形への応用(4)内心
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
右の図において$I$は$\triangle ABC$の内心.$AB=5,BC=10,CA=7$のとき,$AI=?$
この動画を見る
右の図において$I$は$\triangle ABC$の内心.$AB=5,BC=10,CA=7$のとき,$AI=?$
福田のわかった数学〜高校1年生047〜三角形への応用(4)内心に関する問題
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
福田のわかった数学〜高校1年生046〜三角形への応用(3)
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(3)
右の図(※動画参照)において、$I$は$\triangle ABC$の内心である。$AB=5,\ BC=10$
$CA=7$のとき、$AR,\ IR$を求めよ。
この動画を見る
数学$\textrm{I}$ 三角形への応用(3)
右の図(※動画参照)において、$I$は$\triangle ABC$の内心である。$AB=5,\ BC=10$
$CA=7$のとき、$AR,\ IR$を求めよ。
【定理・公式の使い方を整理!】三角比の定理の使い方を総整理!〔高校数学 数学〕
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
1⃣
$\tan\theta=\sqrt{ 2 }$のとき、$\cos\theta$と$\sin\theta$を求めなさい($\theta$は鋭角)
2⃣
次の三角比を$90^{ \circ }$以下の角の三角比で表せ
(1)$\sin110^{ \circ }$
(2)$\cos120^{ \circ }$
(3)$\tan130^{ \circ }$
3⃣
動画内の図の$\triangle ABC$において$a$の長さを求め、面積も求めなさい
この動画を見る
1⃣
$\tan\theta=\sqrt{ 2 }$のとき、$\cos\theta$と$\sin\theta$を求めなさい($\theta$は鋭角)
2⃣
次の三角比を$90^{ \circ }$以下の角の三角比で表せ
(1)$\sin110^{ \circ }$
(2)$\cos120^{ \circ }$
(3)$\tan130^{ \circ }$
3⃣
動画内の図の$\triangle ABC$において$a$の長さを求め、面積も求めなさい
定理・公式の使い方を整理!】三角比の定理の使い方を総整理!〔高校数学 数学〕
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
1.$\tan θ=\sqrt{ 2 }$のとき、$\cosθ$と$sinθ$を求めなさい($θ$は鋭角)
2.次の三角比を$90^\circ$以下の角の三角比で表せ
(1)$sin110^\circ$ (2)$cos120^\circ$ (3)$tan130^\circ$
3.次の△ABCにおいて$a$の長さを求め、面積も求めなさい
※図は動画参照
この動画を見る
1.$\tan θ=\sqrt{ 2 }$のとき、$\cosθ$と$sinθ$を求めなさい($θ$は鋭角)
2.次の三角比を$90^\circ$以下の角の三角比で表せ
(1)$sin110^\circ$ (2)$cos120^\circ$ (3)$tan130^\circ$
3.次の△ABCにおいて$a$の長さを求め、面積も求めなさい
※図は動画参照
日大山形(改) 弧の比何の比気になる比
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\stackrel{\huge\frown}{AQ}:\stackrel{\huge\frown}{QC} =?
$
*図は動画内参照
日本大学山形高等学校
この動画を見る
$
\stackrel{\huge\frown}{AQ}:\stackrel{\huge\frown}{QC} =?
$
*図は動画内参照
日本大学山形高等学校
【数Ⅰ】高2生必見!!2020年度 第2回 K塾高2模試 大問2-2_図形と計量
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
この動画を見る
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
福田のわかった数学〜高校1年生045〜三角形への応用(2)
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(2)
右の図(※動画参照)において$\angle AMB=\angle BAC=\theta$、
$MC=AC=\sqrt2, AB=1$のとき
$BC$を求め、$\theta$の値を求めよ。
この動画を見る
数学$\textrm{I}$ 三角形への応用(2)
右の図(※動画参照)において$\angle AMB=\angle BAC=\theta$、
$MC=AC=\sqrt2, AB=1$のとき
$BC$を求め、$\theta$の値を求めよ。
【三角比の応用を整理!】三角比を使う定理の使い方を解説〔高校数学 数学〕
福田のわかった数学〜高校1年生044〜三角形への応用(1)正弦定理の証明
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形への応用(1)
三角形ABCの外接円の半径をRとする。
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$
が成り立つことを示せ。
この動画を見る
数学$\textrm{I}$ 三角形への応用(1)
三角形ABCの外接円の半径をRとする。
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$
が成り立つことを示せ。
福田のわかった数学〜高校1年生043〜三角比の相互関係(2)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角比の相互関係(2)
$\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)$のとき
$\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,$
$\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}$の値を求めよ。
この動画を見る
数学$\textrm{I}$ 三角比の相互関係(2)
$\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)$のとき
$\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,$
$\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}$の値を求めよ。
中学受験 算数 洛南高校附属中学
単元:
#算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校
この動画を見る
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校