数Ⅰ
大学入試の因数分解 神戸女子大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^4+a^2b^2+b^4$
神戸女子大学
この動画を見る
因数分解せよ
$a^4+a^2b^2+b^4$
神戸女子大学
大学入試の因数分解 北海道薬科大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2y^2+x^2y+xy^2-x-y-1$
北海道薬科大学
この動画を見る
因数分解せよ
$x^2y^2+x^2y+xy^2-x-y-1$
北海道薬科大学
2024滋賀県のラスボス質問ください
よくある整数問題だけど有理数という言葉で戸惑うかもしれない、そんな問題 2024 大阪府
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xを有理数とする
$\frac{35}{12}x$と$\frac{21}{20}x$の値がともに自然数となる
最も小さいxの値を求めよ
2024大阪府
この動画を見る
xを有理数とする
$\frac{35}{12}x$と$\frac{21}{20}x$の値がともに自然数となる
最も小さいxの値を求めよ
2024大阪府
因数分解 名古屋女子大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^6-7a^3-8$
名古屋女子大学
この動画を見る
因数分解せよ
$a^6-7a^3-8$
名古屋女子大学
【短時間でポイントチェック!!】絶対値を含む定積分〔現役講師解説、数学〕
単元:
#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\int_1^3{|x^2-4|}dx$
この動画を見る
$\int_1^3{|x^2-4|}dx$
意外と間違える!?二次方程式 2024京都府
単元:
#数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$
2024京都府
この動画を見る
方程式を解け
$8x^2=22x$
2024京都府
2024早稲田(教育)循環小数を2進法で表せ
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問
この動画を見る
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問
大学入試の因数分解 2通りで解説 近畿大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^3-3x^2-6x+8$
近畿大学
この動画を見る
因数分解せよ
$x^3-3x^2-6x+8$
近畿大学
見ただけで何でくくれるかは、わかる。 大学入試の因数分解 秋田大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
秋田大学
この動画を見る
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
秋田大学
大学入試の因数分解 久留米大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^5-a^2b^2(a-b)-b^5$
久留米大学
この動画を見る
因数分解せよ
$a^5-a^2b^2(a-b)-b^5$
久留米大学
ルートの中のルートの中にルートがある。2024中大杉並
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
この動画を見る
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
平方根 整数部分と小数部分 2024明大中野
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$
2024明治大学付属中野高等学校
この動画を見る
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$
2024明治大学付属中野高等学校
因数分解 2024明大中野
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+3xy+3x-18y-54$
2024明治大学付属中野高等学校
この動画を見る
因数分解せよ
$x^2+3xy+3x-18y-54$
2024明治大学付属中野高等学校
平方根の計算 堀川高校 2024最初の一問
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt {18}+4)^2(\sqrt {18}-4) - (\sqrt{98}-\frac{84}{\sqrt{98}})^5$
2024堀川高等学校
この動画を見る
$(\sqrt {18}+4)^2(\sqrt {18}-4) - (\sqrt{98}-\frac{84}{\sqrt{98}})^5$
2024堀川高等学校
平方根と式の値 大阪星光学院最初の一問 2024
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=1+\sqrt 2 + \sqrt 3 + \sqrt 5$のとき
$x^2-2x+5$の値は?
大阪星光学院2024
この動画を見る
$x=1+\sqrt 2 + \sqrt 3 + \sqrt 5$のとき
$x^2-2x+5$の値は?
大阪星光学院2024
平方完成こうしてる?
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
平方完成を式化した時の考え方に関して解説します。
この動画を見る
平方完成を式化した時の考え方に関して解説します。
綺麗な問題。それしかないことを示すのが肝
知っていれば一瞬!!2次方程式と解と式の関係 2024早稲田実業
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
この動画を見る
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
42024を素因数分解せよ。2024早稲田実業最初の一問!!
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$205^2$の値を利用して42024を素因数分解せよ
(2024早稲田実業学校)
この動画を見る
$205^2$の値を利用して42024を素因数分解せよ
(2024早稲田実業学校)
二次方程式の解が1つ 灘高校2024
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの二次方程式
$3(x+a)^2=(2a^2-1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値をすべて求めよ
灘高等学校2024
この動画を見る
xの二次方程式
$3(x+a)^2=(2a^2-1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値をすべて求めよ
灘高等学校2024
【わかりやすく】平均値・中央値・最頻値の求め方を解説!(数学A 整数の性質)
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。
(2)中央値を求めよ。
(3)最頻値を求めよ。
この動画を見る
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。
(2)中央値を求めよ。
(3)最頻値を求めよ。
福田のおもしろ数学049〜1分チャレンジ〜5重根号に挑戦!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt{ 2024\sqrt{ 2023\sqrt{ 2022\sqrt{ 2021\sqrt{ 2020×2018+1 }+1 }+1 }+1 }+1}$を計算してください。
この動画を見る
$\sqrt{ 2024\sqrt{ 2023\sqrt{ 2022\sqrt{ 2021\sqrt{ 2020×2018+1 }+1 }+1 }+1 }+1}$を計算してください。
中央値と平均値 早稲田本庄2024
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
「1,2,3,4,5,7,10,14,19」から中央値=7,平均値=9となる5コのデータを抜き出し積を作る。
最も大きい積=?
早稲田大学 本庄高等学院2024
この動画を見る
「1,2,3,4,5,7,10,14,19」から中央値=7,平均値=9となる5コのデータを抜き出し積を作る。
最も大きい積=?
早稲田大学 本庄高等学院2024
大学入試でなく高校入試だよ。定数項を求めよ。2通りで解説。2024早稲田本庄(改)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{2024} (8x+\frac{11}{x}+23) (8x+\frac{11}{x}-23) (8x-\frac{11}{x}+23)$
の展開式における定数項は?
2024早稲田大学 本庄高等学院(改)
この動画を見る
$\frac{1}{2024} (8x+\frac{11}{x}+23) (8x+\frac{11}{x}-23) (8x-\frac{11}{x}+23)$
の展開式における定数項は?
2024早稲田大学 本庄高等学院(改)
ルートを含む二次方程式の計算 2024早稲田本庄最初の一問
単元:
#数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
この動画を見る
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
この問題解ける?
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で,$A,B,C,D$は円$O$の周上の点で$AO\parallel BC$である.$\angle AOB=49°$のとき,
$\angle ADC$の大きさを求めよ.
この動画を見る
図で,$A,B,C,D$は円$O$の周上の点で$AO\parallel BC$である.$\angle AOB=49°$のとき,
$\angle ADC$の大きさを求めよ.
円の半径と言われたら?成蹊
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
辺ABと辺BCの両方に接する円の半径は?
成蹊高等学校
この動画を見る
辺ABと辺BCの両方に接する円の半径は?
成蹊高等学校
高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$
この動画を見る
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$