数Ⅰ
【数学】正弦定理の証明は覚えなくても、当たり前のように発想できます【発想の仕方の解説】
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】正弦定理の証明についての説明動画です
-----------------
(1)$\triangle ABC$において、$A=75^{ \circ },C=60^{ \circ },b=6$のとき、$C$の値を求めよ。
(2)動画内の図のような$\triangle ABC$において、辺$C$の大きさを求めよ。
この動画を見る
【数学】正弦定理の証明についての説明動画です
-----------------
(1)$\triangle ABC$において、$A=75^{ \circ },C=60^{ \circ },b=6$のとき、$C$の値を求めよ。
(2)動画内の図のような$\triangle ABC$において、辺$C$の大きさを求めよ。
【高校数学】背理法がどの動画見てもわからない人は、見なさい
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】背理法の解説動画です
-----------------
\sqrt{ 3 }が無理数であることを証明せよ
この動画を見る
【高校数学】背理法の解説動画です
-----------------
\sqrt{ 3 }が無理数であることを証明せよ
千葉大 2次方程式の解 整数問題
単元:
#数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
この動画を見る
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
東大2020文系第2問 ヨビノリたくみ&東大受験芸人たわし
単元:
#数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ
(2)
どの直線も少なくとも1つ通る場合の確率を求めよ
出典:2020年東京大学 文系第2問
この動画を見る
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ
(2)
どの直線も少なくとも1つ通る場合の確率を求めよ
出典:2020年東京大学 文系第2問
信州大 絶対値のついた2次方程式 相違4実根
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
この動画を見る
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
福井大 2次方程式と複素平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
お茶の水女子大 多項式の展開
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ
出典:2000年お茶の水女子大学 過去問
この動画を見る
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ
出典:2000年お茶の水女子大学 過去問
九州大 三次方程式と無理数
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$
(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ
(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ
(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ
出典:2000年九州大学 過去問
この動画を見る
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$
(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ
(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ
(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ
出典:2000年九州大学 過去問
山梨大 2次方程式と複素数平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
√5が無理数であるユニークな証明 黄金比
単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 5 }$が無理数であることを証明せよ
この動画を見る
$\sqrt{ 5 }$が無理数であることを証明せよ
2020問題 整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ
この動画を見る
$x^{2020}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ
2020問題 整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+1)^{2020}$を$x^3+x^2+x+1$で割った余りを求めよ
この動画を見る
$(x+1)^{2020}$を$x^3+x^2+x+1$で割った余りを求めよ
中部大(経済)整式の剰余
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(2x^3+x^2+1)^3$を$x^2-x+1$で割った余りを求めよ
出典:中部大学経営情報学部 過去問
この動画を見る
$(2x^3+x^2+1)^3$を$x^2-x+1$で割った余りを求めよ
出典:中部大学経営情報学部 過去問
最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると
$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$
である。したがって
$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$
となる。
4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき
$AB=\boxed{\ \ ケコ\ \ }$
である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり
$\angle AEG=\boxed{\ \ ス\ \ }$
である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$
2020センター試験過去問
この動画を見る
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると
$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$
である。したがって
$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$
となる。
4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき
$AB=\boxed{\ \ ケコ\ \ }$
である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり
$\angle AEG=\boxed{\ \ ス\ \ }$
である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$
2020センター試験過去問
最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち
$x=2.363636\cdots$
とする。このとき
$100×x-x=236.\dot3\dot6-2.\dot3\dot6$
であるから、$x$を分数で表すと
$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$
である。
(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから
$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$
と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。
$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。
2020センター試験過去問
この動画を見る
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち
$x=2.363636\cdots$
とする。このとき
$100×x-x=236.\dot3\dot6-2.\dot3\dot6$
であるから、$x$を分数で表すと
$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$
である。
(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから
$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$
と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。
$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。
2020センター試験過去問
最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第2問〜三角比、データの分析
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#三角比への応用(正弦・余弦・面積)#データの分析#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、
$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$
である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから
$AD=\boxed{\ \ カ\ \ }$
である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。
[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。
99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。
⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。
(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。
$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。
次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)
(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。
次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)
(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。
都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)
2020センター試験過去問
この動画を見る
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、
$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$
である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから
$AD=\boxed{\ \ カ\ \ }$
である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。
[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。
99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。
⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。
(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。
$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。
次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)
(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。
次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)
(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。
都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)
2020センター試験過去問
立方根・平方根の混じった方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ
$\sqrt[ 3 ]{ 2-x }+\sqrt{ x-1 }=1$
この動画を見る
実数解を求めよ
$\sqrt[ 3 ]{ 2-x }+\sqrt{ x-1 }=1$
光文社新書「中学の知識でオイラー公式がわかる」Vol 18 いざ本丸へ
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^{i\theta}=\cos\theta+i \sin\theta$
$e^{i\pi}=-1$
この動画を見る
$e^{i\theta}=\cos\theta+i \sin\theta$
$e^{i\pi}=-1$
光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
光文社新書「中学の知識でオイラーの公式がわかる」Vol.3余弦定理
藤田保健衛生大(医)5乗根の計算
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }+11}{2} }-\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }-11}{2} }$
出典:2017年藤田医科大学医学部 過去問
この動画を見る
$\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }+11}{2} }-\sqrt[ 5 ]{ \displaystyle \frac{5\sqrt{ 5 }-11}{2} }$
出典:2017年藤田医科大学医学部 過去問
総合問題2020
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(5+\sqrt{ 26 })^{2020}$の1の位の数を求めよ
この動画を見る
$(5+\sqrt{ 26 })^{2020}$の1の位の数を求めよ
10万人ありがとうございます。鬼が笑う2021問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 20 ]{ 20! }$と$\sqrt[ 21 ]{ 21! }$ どちらが大きいか求めよ
この動画を見る
$\sqrt[ 20 ]{ 20! }$と$\sqrt[ 21 ]{ 21! }$ どちらが大きいか求めよ
先ほどの動画の解説 後編
先ほどの動画の解説 前編
わかるかな?【余興】
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
下記問題を解いてください
$1-3=4-6$
この動画を見る
下記問題を解いてください
$1-3=4-6$
1の位が5の数の2乗は1秒で計算できるよ
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$25^2=??$
$35^2=??$
$45^2=??$
$55^2=??$
$65^2=??$
$75^2=??$
$85^2=??$
$95^2=??$
$105^2=??$
$115^2=??$
・
・
・
$195^2=??$
$205^2=??$
この動画を見る
$25^2=??$
$35^2=??$
$45^2=??$
$55^2=??$
$65^2=??$
$75^2=??$
$85^2=??$
$95^2=??$
$105^2=??$
$115^2=??$
・
・
・
$195^2=??$
$205^2=??$
2020整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+1)^{2020}$を$x^2+1$で割った余りを求めよ
この動画を見る
$(x+1)^{2020}$を$x^2+1$で割った余りを求めよ
COS36°を3通りで求めてね
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos36^{ \circ }$を3通りで求めよ
この動画を見る
$\cos36^{ \circ }$を3通りで求めよ
ゆく年くる年問題 2019~2020
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(2019+2020)(2019^2+2020^2)(2019^4+2020^4)$
$\times(2019^8+2020^8)(2019^{16}+2020^{16})$
$(2019^{32}+2020^{32})=2020^x-2019^x$
これを解け.
この動画を見る
$(2019+2020)(2019^2+2020^2)(2019^4+2020^4)$
$\times(2019^8+2020^8)(2019^{16}+2020^{16})$
$(2019^{32}+2020^{32})=2020^x-2019^x$
これを解け.