数Ⅰ - 質問解決D.B.(データベース) - Page 8

数Ⅰ

斜線部の面積を求めよ!2024早稲田佐賀

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照

2024早稲田佐賀高等学校
この動画を見る 

正多角形の内角と外角 京都府

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある正多角形において、1つの外角の大きさの9倍が、1つの内角の大きさと等しいとき、この正多角形の辺の数を求めよ。
京都府
この動画を見る 

2024年に出そうな式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x-y=xy=44$のとき
$x^2+y^2=?$
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
イア \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]
\end{array}
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a+a^3 = 2024$となる自然数a=?
この動画を見る 

答えが2024となる問題作れ!!雑談あり。問題作ったらコメント欄にお願い!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
答えが2024となる問題を作れ!!
この動画を見る 

正四面体を回転!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AHを軸として1回転したときに
△ABCが通過する部分の体積を求めよ

*図は動画内参照
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。

2023杏林大学過去問
この動画を見る 

ルートの計算!!2通りで解説

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{54^2-48^2-6^2}$
この動画を見る 

ちょっと変わった2次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+x=5+\sqrt 5$
この動画を見る 

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=AD
x=?
*図は動画内参照
この動画を見る 

この公式証明できる?

アイキャッチ画像
単元: #図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角比の相互関係の公式の証明について解説していきます。
この動画を見る 

君はどうやって解く? 3通りで解説 二次方程式の計算 八王子東

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(2x+5)^2=(x+1)^2$

八王子東高等学校
この動画を見る 

【ひらめきに頼らず…!】整数:灘高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \color{orange}{x^2+x-n+1=0}$が整数解をもつような$ \color{red}{整数n}$のうち
$ \color{red}{n-2023の絶対値}$が最も小さいものは$ \Box $である.

$ \Box $を解け.

灘高校過去問
この動画を見る 

普通に筆算!?  慶應女子

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
190 × 1950 - 188 × 1949 - 189 × 1948 + 187 × 1947
この動画を見る 

【共通テスト】数学IA 第2問でスラスラ解けるテクニック、解説します(2023年本試)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
この動画を見る 

平方数 大分県

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$460-20n=k^2$(kは自然数)
となるような自然数nの値をすべて求めよ。
大分県
この動画を見る 

【データの分析⑧】共通テスト数学に向けて1週間でサクッと復習!【相関係数とグラフ】#データの分析 #相関係数 #グラフ #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 

【共通テスト】数学IA 第1問で満点取る思考回路、解説します(2023年本試)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①

であるとき、さらに

$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②

が成り立つならば

$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③

であることが、等式①、②、③の左辺を展開して比較することによりわかる。


(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。

②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
 また、$\triangle ABC$の面積は[セソ]である。
この動画を見る 

正八角形と正方形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle C$=?
*図は動画内参照
この動画を見る 

【データの分析⑦】共通テスト数学に向けて1週間でサクッと復習!【共分散、相関係数】#データの分析 #共分散 #相関係数 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 

平均点 城北

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,Dの得点の平均は80点
A,Bの平均点は78点
A,C,Dの平均点は81点
Aの得点は?

城北高等学校
この動画を見る 

【データの分析⑥】共通テスト数学に向けて1週間でサクッと復習!【変量の変換】#データの分析 #変量の変換 #高校数学 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 

二次方程式の解が2つの整数 戸山

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの2次方程式$x^2+ax-8=0$の2つの解がともに整数であるとき、aの値をすべて求めよ。
戸山高等学校
この動画を見る 

福田の数学〜長文問題を解くコツは〜慶應義塾大学2023年環境情報学部第6問〜長文問題と2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{6}$いま、 A 国の部品会社 A 社から B 国のメ ー カ ー B 社が一定量の部品の取引を行うために、その取引価格pを交渉している。 A 社の生産コスト c は事前の投資額xに依存し、$\dfrac{1}{8}x^2-10x+220$が成り立っているものとすると、 A 社の利益はp-c-xと表すことができる。一方、 B 社はこの部品を使用し生産を行うことで308 の売上を得ることができるものとすると、 A 社から部品を輸人する際に 10 %の関税が課せられるため、 B 社の利益は$308- \dfrac{11}{10}p$と表すことができる。ところで、交渉は常に成立するわけではなく決裂することもあるから、 A 社およびB 社は共に決裂した場合のことを考慮しながら互いに交渉しなければならないそこで、交渉が成立したときの A 社 (B 社)の利益から、交渉が決裂したときのA社(B社)の利益(負の場合は損失を意味する)を引いた値を、A社(B社)の純利益と呼び、 A 社の純利益と B 社の純利益の積を最大化するようにpの値が定まるものとする。またA社は以上のことを踏まえて、自らの利益p-c-xを最大化するようなxの大きさの投資を、事前に行っておくものとする。
(1)交渉が決裂した時、A社は生産を行わず生産コストはかからないが、事前の投資額xの分だけ損失を被るのでA社の利益は-xとなり、B社はB国内の他の部品会社から、価格220で同僚の同じ部品を調達できるとすると、(この場合は関税がかからないことから)B社の利益は308-220=88となる。この場合の投資額xは$\fbox{ア}$となり、価格pは$\fbox{イ}$となる。
(2)交渉が決裂した時、A者は国内の他のメーカーに価格250で部品を販売できるとするとB社の利益は0となる。この場合の投資額xは$\fbox{ウ}$となり、価格pは$\fbox{エ}$となる。
最後に、交渉が成立した場合の「(2)の会社の利益」ー「(1)のA社の利益」=$\fbox{オ}$

2023慶應義塾大学環境情報学部過去問
この動画を見る 

4次関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
最小値を求めよ
$f(x)=(x^2+2x+2)^2+x^2+2x$
この動画を見る 

【データの分析④】共通テスト数学に向けて1週間でサクッと復習!【分散】#データの分析 #分散 #高校数学 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 

2024年問題 近畿大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{n^2+2024}$が自然数となる自然数nは全部で何コか?

近畿大学
この動画を見る 

【データの分析③】共通テスト数学に向けて1週間でサクッと復習!【平均値】#データの分析 #平均値 #高校数学 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 
PAGE TOP