方べきの定理と2つの円の関係 - 質問解決D.B.(データベース)

方べきの定理と2つの円の関係

【数A】【図形の性質】空間図形の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の各面の対角線の交点を頂点とし、
隣り合った面どうしの頂点を結ぶことによって、
立方体の中に正八面体ができる。
このとき、次の場合について、
正八面体の体積を求めよ。
(1) 立方体の1辺の長さが 10
(2) 正八面体の1辺の長さが6

一辺の長さが5の正八角形について、
次のものを求めよ。
(1) 正八角形の体積V
(2) 正八角形に内接する球の半径r
この動画を見る 

【数A】【図形の性質】空間図形の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCD において,辺AB と辺CDが垂直ならば,頂点Aから平面BCDに下ろした垂線AHと,頂点Bから平面CDAに下ろした垂線BKは交わることを示せ。ただし,HとB,KとAはそれぞれ一致しないものとする。

直方体 ABCD-EFGHにおいて,
辺AB,AD,AEの長さをそれぞれa,b,cとする。
また,頂点Aから直線FHに下ろした垂線をAK とする。
このとき,次の問いに答えよ。
(1) EK⊥FHであることを証明せよ。
(2) 垂線AKの長さを求めよ。
この動画を見る 

【数A】【図形の性質】空間図形の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
この動画を見る 

【数A】【図形の性質】作図の応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。

右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。

右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る 

【数A】【図形の性質】円の位置関係 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。

図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
この動画を見る 

福田の数学〜東北大学2024年文系第2問〜75°の三角比と図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#方べきの定理と2つの円の関係#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2 a, b, dを正の実数とし、xy平面上の点O(0,0), A(a,0), B(b,0), D(0,d)が次の条件をすべて満たすとする。
OAD=15°, OBD=75°, AB=6
以下の問いに答えよ。
(1)tan75°の値を求めよ。
(2)a, b, dの値をそれぞれ求めよ。
(3)2点O, Dを直径の両端とする円をCとする。線分ADとCの交点のうちDと異なるものをPとする。また、線分BDとCの交点のうちDと異なるものをQとする。このとき、方べきの定理AP・AD=AO2, BP・BD=BO2 を示せ。
(4)(3)の点P,Qに対し、積AP・BQの値を求めよ。
この動画を見る 

円と面積比 嵯峨野高校2024

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△APD=△BPC×5
PC=?
*図は動画内参照
2024嵯峨野高等学校
この動画を見る 

福田のおもしろ数学056〜折り返し問題〜半円を折り返す

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#方べきの定理と2つの円の関係#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 AC=6,BC=2 のとき、 AD の長さを求めよ。
※図は動画内参照
この動画を見る 

福田のおもしろ数学053〜数学オリンピックの幾何の問題〜線分の長さを求める

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#方べきの定理と2つの円の関係#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
DB = BC = 2 , AB = AC, 直線 AC と直線 DC は点 A, D で円 O に接している。
直線AB と円 O の交点のうち A でない方を E とし、直線 CE と円 O の交点のうち E でない方を F とする。
線分 EF の長さを求めよ。
※図は動画内参照

数学オリンピック過去問
この動画を見る 

福田のおもしろ数学027〜1分でできたらマジ天才〜2直線のなす角の最大

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の図で、xの辺の長さを求めよ

図は動画内参照
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第5 問(1) AQDと直線CEに着目するとQRRDDSSACQ=1が成り立つのでQR:RD=イ:ウ となる。また、AQDと直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=となる。さらに5点D,Q,R,S,Tに着目するとDR=43となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ CQ と BQ DQ の大小を比べる。
まず AQ CQ = 5 3 = 15 かっ BQ DQ =キクであるから
AQCQ ケ BQDQ 
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQCQ ケ BQXQ 
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
この動画を見る 

福田のおもしろ数学022〜10秒でできたら天才〜2つの円と線分

アイキャッチ画像
単元: #中2数学#数A#図形の性質#方べきの定理と2つの円の関係#三角形と四角形#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Xを求めよ。
※図は動画内参照
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

答えは出るでしょう。。。

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
c2をa,bで表せ
*図は動画内参照
この動画を見る 

図形の性質 方べきの定理【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。

右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
この動画を見る 

まさかの方べ○の定理

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xを求めよ
*図は動画内参照
この動画を見る 

2つの円 埼玉県 令和4年度 数学 2022 入試問題100題解説77問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照

2022埼玉県
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+2z
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点αをとり、αを通る直線lがCと交わる2点をβ1,β2とする。
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点αを固定したままlを動かすとき、積|β1α||β2α|が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

斜線部の面積 中京大附属中京 2022入試問題解説100問解説59問目!

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積を求めよ。
*図は動画内参照

2022中京大学附属中京高等学校
この動画を見る 

球 中央大学附属(推薦)2022入試問題解説18問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#方べきの定理と2つの円の関係#立体図形#体積・表面積・回転体・水量・変化のグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径の差が1
表面積の和が34π
2つの球の体積の和は?

2022中央大学附属高等学校(推薦)
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第5問 ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。
(1)点Dは線分AGの中点であるとする。
このとき、ABCの形状に関係なくADDE=        
である。また、点Fの位置に関係なくBPAP=    ×        ,
CQAQ=    ×        であるので、常にBPAP+CQAQ=    

        の解答群
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ

(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、

AQ=         APであるから
AP=        , AQ=        であり、
CF=        である。

(3)ABCの形状や点Fの位置に関係なく、常にBPAP+CQAQ=10となるのは
ADDG=        のときである。

2022共通テスト数学過去問
この動画を見る 

初見で解けたら認めよう。2通りで解説。

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#方べきの定理と2つの円の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AC=?
*図は動画内参照

國學院大學久我山高等学校
この動画を見る 

e^π>22 示せ

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
eπ>22を示せ.
e>2.71,π>3.14
この動画を見る 

もっちゃんと数学 フェルマーの小定理

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
フェルマーの定理に関して解説していきます.
この動画を見る 

【演習編!】平面図形の知識を演習で効率的に整理!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
平面図形の解き方について解説します。
この動画を見る 

【円の性質】平面図形の円の性質はこう理解する!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
平面図形の円の性質について解説します。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 
図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つの円に接している。このとき
AB=        BC 
AC=        BC
BC=1    (    +        +        )   (    <    )
である。

2021慶應義塾大学環境情報学部過去問
この動画を見る 

【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、AB=3,AC=6,BAC=90°であるとき、BC=()()である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、CF=()()()とわかるからBFFC=()()である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、BQQD=()であり、△BFQの面積は()()である。また、△CPQの面積は()()である。
この動画を見る 

数学「大学入試良問集」【6−4 メネラウス、方べきの定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
ABCに対し、点PABの中点、点Qは辺BC上のB,Cと異なる点、点Rは直線AQと直線CPとの交点とする。
このとき、各問いに答えよ。
(1)
a=CRRP,b=CQQBとおくとき、abの関係式を求めよ。

(2)
ABCの外接円Oと直線CPとの点C以外の交点をXとする。
AP=CR,CQ=QBであるとき、CR:RP:PXを求めよ。
この動画を見る 

太陽と黒点

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#平面図形#角度と面積#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの円の半径の和=47,2つの円の半径の差=43のとき
斜線部の面積=?
*図は動画内参照
この動画を見る 
PAGE TOP preload imagepreload image