約数・倍数・整数の割り算と余り・合同式 - 質問解決D.B.(データベース) - Page 13

約数・倍数・整数の割り算と余り・合同式

整数問題 一橋大 令和四年

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a3^b+2^c3^d = 2022$を満たす0以上の整数a,b,c,dの組を求めよ。

2022一橋大学
この動画を見る 

雑問

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 25^{63}\times 63^{25}$の下3桁を求めよ.
この動画を見る 

明治学院 令和4年度 2022 入試問題100題解説85問目!

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bは整数とする。
$ab^2+2ab+a=50$
a+bの最小値は?

2022明治学院高等学校
この動画を見る 

ニャンニャン問題2022

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 222.......22$のようにすべての桁の数が$2$である整数の中には
必ず$2022$の倍数があることを示せ.
この動画を見る 

【糸口を探せ!】整数:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{24n}$と$\sqrt{n+27}$がともに整数になるような最小の自然数$n$の値を求めよ.

同志社国際高校過去問
この動画を見る 

無題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る 

一橋大学2022整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^a3^b+2^c3^d=2022$を満たす$0$以上の整数$(a,b,c,d)$を求めよ.

2022一橋大過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

【題意をつかもう!数学の意味を知ろう!】整数:沖縄県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
「ある2桁の自然数$X$と,その数の十の位の数と一の位の数を入れ替えてできる数$Y$との和が$132$になる.」
もとの自然数$X$として考えられる数をすべて求めなさい.
※もとの自然数$X$は,十の位の数が一の位の数より大きいものとする.

沖縄県高校過去問
この動画を見る 

整数問題 須磨学園(改) 2022年入試問題100問解説の53問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。

2022須磨学園高等学校
この動画を見る 

2022年の整数問題!この問題好きです❤️ 早稲田大学高等学院2022年入試問題解説49問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?

2022早稲田大学高等学院
この動画を見る 

整数問題 慶應志木高校2022入試問題解説36問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての2次方程式
$x^2-(4t-1)x+4t^2-2t = 0$の2つの解をα、βとする
5,α,βを辺にもつ三角形が直角三角形のとき
tの値は?

2022慶應義塾志木高等学校
この動画を見る 

東京大学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ

1980年代東京大学
この動画を見る 

整数問題 慶應志木高校2022入試問題解説35問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x,y,z:素数
$z=80x^2+2xy - y^2$を満たす(x,y,z)の組のうち、
zが2番目に小さくなるものを求めよ
(x,y,z)=▢

2022慶應義塾志木高等学校
この動画を見る 

2022久留米大(医)約数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2\lt n \gt ^2-9\lt n \gt-7・\lt 81 \gt=0$
を満たす3桁の自然数nを求めよ

2022年久留米大学医学部過去問
この動画を見る 

2022年の整数問題 愛工大名電高校2022入試問題解説34問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2022}{2n+1}$が素数になる自然数nのうち最大のものを求めよ。

2022愛知工業大学名電高等学校
この動画を見る 

【数学A/整数】方程式の整数解を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
方程式$xy-3x+y+2=0$を満たす整数の組$(x,y)$を全て求めよ。
この動画を見る 

共通テストの誘導はこういうことだったのね

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割って3余り,9で割って2余り,11で割って1余る最小の自然数を求めよ.
この動画を見る 

共通テスト追試ムズイぞ整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
共通テスト追試の整数問題を解説していきます.
この動画を見る 

2022関西医科 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{6x^2+17x+10}{3x-2}$
(1)$f(x) \gt 0$を解け
(2)$f(n)$の値が自然数となる整数$n$
を求めよ。
2022年 関西医科過去問
この動画を見る 

余りに関する問題 2022灘中(改)

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{2022}$を17で割った余りは?

2022灘中学校
この動画を見る 

整数問題 千葉大(医)類題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$k,n$を
$k^2=3^n+360$
全て求めよ。

千葉大(医)過去問
この動画を見る 

9で割り切れるのはなぜ?京都大(改)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^9 - n^3$は9で割り切れるのはなぜ?(n:整数)

京都大学
この動画を見る 

【数学A/整数】最大公約数と最小公倍数を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
120と252の最大公約数と最小公倍数を求めよ。
この動画を見る 

【数学A/整数】約数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
180の約数の個数とその総和を求めよ。
この動画を見る 

2022灘中 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=?$
$\dfrac{A}{2^a}-\dfrac{B}{3^b}-\dfrac{1}{5^4}=\dfrac{337}{2^a・3^b・5^4}$
$1\leqq B\leqq 9,2\leqq a,b\leqq5$

灘中過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 
PAGE TOP