約数・倍数・整数の割り算と余り・合同式 - 質問解決D.B.(データベース) - Page 14

約数・倍数・整数の割り算と余り・合同式

筑波大附属の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
8a=5bを満たす自然数a,bの中で積abが100の倍数となる最も小さいaは?

筑波大学附属高等学校
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$x,m,n$を全て求めよ.
$x^2=7^m-2^n$
この動画を見る 

ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left[\dfrac{x^2+1}{10}\right]+\left[\dfrac{10}{x^2+1}\right]=1$
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n・2^n+1$が3の倍数となる自然数$n$を求めよ.

数学オリンピックモスクワ過去問
この動画を見る 

どっちがでかい? エレガントな解法も

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\left(\dfrac{1}{2021}\right)^{2022}$VS $\left(\dfrac{1}{2022}\right)^{2021}$
この動画を見る 

整数問題 あの定理の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{10000}n^n$
$=1^1+2^2+3^3+・・・・・・9999^{9999}+10000^{10000}$を3で割った余りを求めよ.
この動画を見る 

整数問題 愛知高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。

愛知高等学校
この動画を見る 

比例式と整数

アイキャッチ画像
単元: #数学(中学生)#中1数学#数A#比例・反比例#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
この動画を見る 

千葉大(医)の類題 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$

千葉大(医)過去問
この動画を見る 

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 

中学レベル 倍数の見分け方の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る 

すべて選べ。高校の内容だけど、中学生も知っておいて損はない。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n(n+1)(n+5)$は何の倍数?(n:整数)
すべて選べ
(a)2の倍数
(b)3の倍数
(c)6の倍数
(d)12の倍数
この動画を見る 

2021東京海洋大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は5以上の素数である.
$P^2-1$は$24$の倍数を示せ.

2021東京海洋大過去問
この動画を見る 

2022年問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
この動画を見る 

コメント欄はありがたい 素晴らしい別解2つ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る 

整数問題 基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る 

整数問題の良問

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
この動画を見る 

超良問⁉️だと思う整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る 

整数問題の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,n$をすべて求めよ.
$2^a+3^b=n^2$
この動画を見る 

【除法はこれでマスター】整式の除法のやり方となんで必要なのかを解説!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
整式の除法のやり方について解説します。
この動画を見る 

整数の基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ab+cd$が$a-c$の倍数ならば,
$ad+bc$も$a-c$の倍数であることを示せ.
$a,b,c,d$は自然数である.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
この動画を見る 

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

九州大の過去問をパクって問題作ってみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
この動画を見る 

連続する五つの整数から一つ除く

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
この動画を見る 

いい問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c,d)$をすべて求めよ.
$(a+bi)(c+di)=7+24i$
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$2^{3^n}+1$は$3^{n+1}$で割り切れ,$3^{n+2}$では割り切れないことを示せ.
この動画を見る 

高校入試ではめずらしい整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^2+n$が100の倍数となる最も小さい自然数nは?

熊本マリスト学園高等学校
この動画を見る 
PAGE TOP