整数の性質

南山大 n!0が100個並ぶ

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
この動画を見る
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
整数問題 合同式 二項展開

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
この動画を見る
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
立命館大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
この動画を見る
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
慈恵医大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
学習院大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
この動画を見る
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材:
#サクシード#サクシード数学Ⅰ・A#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
この動画を見る
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
【数A】整数の性質:ユークリッド応用:n²+3n+8とn+2の最大公約数として考えられるものは??

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材:
#サクシード#サクシード数学Ⅰ・A#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$n^2+3n+8$と$n+2$の最大公約数として考えられるものは??
この動画を見る
$n^2+3n+8$と$n+2$の最大公約数として考えられるものは??
【数A】整数の性質:ユークリッド応用:7n+17と8n+19が互いに素であるような100以下の自然数nは何個あるか。

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材:
#サクシード#サクシード数学Ⅰ・A#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
7n+17と8n+19が互いに素であるような100以下の自然数nは何個あるか。
この動画を見る
7n+17と8n+19が互いに素であるような100以下の自然数nは何個あるか。
千葉大 漸化式 証明

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
この動画を見る
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
岡山県立大 整数問題 合同式

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問
この動画を見る
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問
【数A】整数の性質:互いに素である自然数の個数を丁寧に解説します!

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1~135までの自然数で135と互いに素である自然数の個数は?
この動画を見る
1~135までの自然数で135と互いに素である自然数の個数は?
茨城大 確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
この動画を見る
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
学習院大 整数 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3n+4=(m-1)(n-m)$
$m,n$自然数すべて求めよ
出典:2011年学習院大学 過去問
この動画を見る
$3n+4=(m-1)(n-m)$
$m,n$自然数すべて求めよ
出典:2011年学習院大学 過去問
大分大(医) 整数 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ
出典:2007年大分大学医学部 過去問
この動画を見る
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ
出典:2007年大分大学医学部 過去問
慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか
(1)
$x+y+z=24$
(2)
$x+y+z=24$
$x \leqq y \leqq z$
(3)
$x+2y+3z=24$
出典:2009年慶應義塾 過去問
この動画を見る
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか
(1)
$x+y+z=24$
(2)
$x+y+z=24$
$x \leqq y \leqq z$
(3)
$x+2y+3z=24$
出典:2009年慶應義塾 過去問
明治大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n,17n-20,19x-20$がいずれも素数となる2以上の自然数$n$を全て求めよ。
出典:明治大学 過去問
この動画を見る
$n,17n-20,19x-20$がいずれも素数となる2以上の自然数$n$を全て求めよ。
出典:明治大学 過去問
慶應義塾大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+5y^2=2016$
出典:慶應義塾 過去問
この動画を見る
$x,y$自然数
$x^2+5y^2=2016$
出典:慶應義塾 過去問
茨城大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$21^{2015}$を$400$で割った余りを求めよ
(2)
$2^{2x+1}+1$は$3$の倍数
出典:茨城大学 過去問
この動画を見る
(1)
$21^{2015}$を$400$で割った余りを求めよ
(2)
$2^{2x+1}+1$は$3$の倍数
出典:茨城大学 過去問
大阪星光学院(改)整数問題

単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#大阪聖光学院高等学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+11y^2=759$
出典:大阪星光学院中学校・高等学校 過去問
この動画を見る
$x,y$自然数
$x^2+11y^2=759$
出典:大阪星光学院中学校・高等学校 過去問
開成高校 整数問題 最大公約数・最小公倍数

単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ
出典:開成高等学校 過去問
この動画を見る
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ
出典:開成高等学校 過去問
早稲田 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+2xy+3y^2=27$を満たす整数$(x,y)$の組は何組?
出典:2015年早稲田大学 過去問
この動画を見る
$x^2+2xy+3y^2=27$を満たす整数$(x,y)$の組は何組?
出典:2015年早稲田大学 過去問
京都大 4次方程式 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ
出典:2002年京都大学 過去問
この動画を見る
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ
出典:2002年京都大学 過去問
高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
この動画を見る
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
名古屋大 指数 整数 方程式 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ
出典:2002年名古屋大学 過去問
この動画を見る
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ
出典:2002年名古屋大学 過去問
名古屋市立 式の値 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?
出典:2012年名古屋市立大学 過去問
この動画を見る
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?
出典:2012年名古屋市立大学 過去問
3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$
(1)
$\alpha+\beta$
(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)
出典:一橋大学 過去問
この動画を見る
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$
(1)
$\alpha+\beta$
(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)
出典:一橋大学 過去問
東大 整数問題 Mathematics Japanese university entrance exam Tokyo University

単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
この動画を見る
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
東工大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ
(2)
$a$の素因数は3と5以外にないことを示せ
(3)
$a$を求めよ
出典:2006年東京工業大学 過去問
この動画を見る
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ
(2)
$a$の素因数は3と5以外にないことを示せ
(3)
$a$を求めよ
出典:2006年東京工業大学 過去問
山梨大(医)整数問題 解説:ヨビノリたくみ Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の整数
$log_{a}b$が有理数ならば、自然数$m,n$と2以上の整数が存在して、$a=c^m,b=c^n$と表せることを示せ
出典:山梨大学 過去問
この動画を見る
$a,b$は2以上の整数
$log_{a}b$が有理数ならば、自然数$m,n$と2以上の整数が存在して、$a=c^m,b=c^n$と表せることを示せ
出典:山梨大学 過去問
富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ
出典:富山県立大学 過去問
この動画を見る
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ
出典:富山県立大学 過去問