数A
数A
条件付き確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
本当のことを言う確率が80%の人が3人いる。
1枚の硬貨を投げたところ、三人とも表が出たと証言した。
本当に表が出た確率を求めよ。
この動画を見る
本当のことを言う確率が80%の人が3人いる。
1枚の硬貨を投げたところ、三人とも表が出たと証言した。
本当に表が出た確率を求めよ。
福田の数学〜立教大学2024年経済学部第1問(3)〜3回のさいころの目の積が4の倍数となる確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
さいころを $3$ 回投げて出る目をすべてかけた数が $4$ の倍数となる確率は $\fbox{カ}$ である。
この動画を見る
さいころを $3$ 回投げて出る目をすべてかけた数が $4$ の倍数となる確率は $\fbox{カ}$ である。
【保存版】相加平均・相乗平均の覚え方

単元:
#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#その他#数学(高校生)#参考書紹介
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
この動画を見る
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
三角形の重心 一点で交わるのはなぜ?

内心 内角の二等分線が一点で交わるのはなぜ?

福田の数学〜立教大学2024年理学部第2問〜反復試行の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$1$ から $6$ の番号がひとつずつ重複なくつけられた $6$ つの箱がある。このとき、次の試行を行う。
$\fbox{さいころを $1$ つ投げて、出た目の番号のついた箱に玉を $1$ つ入れる。}$
この試行を繰り返し、いずれかの箱に玉が $3$ 個入った時点で終了する。ただし、$1$ 回目の試行を行う前は、どの箱にも玉は $1$ 個も入っていないとする。終了するまでに行った試行の回数を $N$ とする。
$(1)$ $N$ のとりうる最小値 $N_0$ と最大値 $N_1$ をそれぞれ求めよ。
$(2)$ $N=N_{0}$ となる確率を求めよ。
$(3)$ $N=N_{0}+1$ となる確率を求めよ。
$(4)$ 試行を $6$ 回行った時点で、すべての箱に $1$ つずつ玉が入るという事象を $A$ とする。また、$N=N_{1}$ となる事象を $B$ とする。事象 $A$ が起こったときの事象 $B$ が起こる条件付き確率 $P_{A}(B)$ を求めよ。
$(5)$ $N=N_{1}$ となる確率を $P$ とするとき、$6^{8}P$ は整数となる。その値を求めよ。
この動画を見る
$1$ から $6$ の番号がひとつずつ重複なくつけられた $6$ つの箱がある。このとき、次の試行を行う。
$\fbox{さいころを $1$ つ投げて、出た目の番号のついた箱に玉を $1$ つ入れる。}$
この試行を繰り返し、いずれかの箱に玉が $3$ 個入った時点で終了する。ただし、$1$ 回目の試行を行う前は、どの箱にも玉は $1$ 個も入っていないとする。終了するまでに行った試行の回数を $N$ とする。
$(1)$ $N$ のとりうる最小値 $N_0$ と最大値 $N_1$ をそれぞれ求めよ。
$(2)$ $N=N_{0}$ となる確率を求めよ。
$(3)$ $N=N_{0}+1$ となる確率を求めよ。
$(4)$ 試行を $6$ 回行った時点で、すべての箱に $1$ つずつ玉が入るという事象を $A$ とする。また、$N=N_{1}$ となる事象を $B$ とする。事象 $A$ が起こったときの事象 $B$ が起こる条件付き確率 $P_{A}(B)$ を求めよ。
$(5)$ $N=N_{1}$ となる確率を $P$ とするとき、$6^{8}P$ は整数となる。その値を求めよ。
『3×4=?』

これなんで? フルは↑

単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなんで? フルは↑
【問題文】20×20
この動画を見る
これなんで? フルは↑
【問題文】20×20
福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
「20+20=200」になる理由を解説

単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る
「20+20=200」になる理由を解説しています。
【高校数学】円と直線が接するときの2パターンの考え方【数学のコツ】

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の円と直線が接するときの$k$の値と接点の座標を求めよ。
$x^2+y^2=4, y=x+k$
この動画を見る
次の円と直線が接するときの$k$の値と接点の座標を求めよ。
$x^2+y^2=4, y=x+k$
福田の数学〜慶應義塾大学2024年経済学部第5問〜ある対数とそれを超えない最大の整数

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$を正の実数とする。$m$と$n$は、それぞれ$m$≦$\displaystyle\log_4\frac{x}{8}$, $n$≦$\displaystyle\log_2\frac{8}{x}$ を満たす最大の整数とし、さらに、$\alpha$=$\displaystyle\log_4\frac{x}{8}$-$m$, $\beta$=$\displaystyle\log_2\frac{8}{x}$-$n$ とおく。
(1)$\log_2x$を、$m$と$\alpha$を用いて表せ。
(2)$2\alpha$+$\beta$ の取りうる値を全て求めよ。
(3)$n$=$m$-1 のとき、$m$と$n$の値を求めよ。
(4)$n$=$m$-1 となるために$x$が満たすべき必要十分条件を求めよ。
この動画を見る
$\Large{\boxed{5}}$ $x$を正の実数とする。$m$と$n$は、それぞれ$m$≦$\displaystyle\log_4\frac{x}{8}$, $n$≦$\displaystyle\log_2\frac{8}{x}$ を満たす最大の整数とし、さらに、$\alpha$=$\displaystyle\log_4\frac{x}{8}$-$m$, $\beta$=$\displaystyle\log_2\frac{8}{x}$-$n$ とおく。
(1)$\log_2x$を、$m$と$\alpha$を用いて表せ。
(2)$2\alpha$+$\beta$ の取りうる値を全て求めよ。
(3)$n$=$m$-1 のとき、$m$と$n$の値を求めよ。
(4)$n$=$m$-1 となるために$x$が満たすべき必要十分条件を求めよ。
福田の数学〜慶應義塾大学2024年経済学部第2問〜確率の基本性質と非復元抽出の条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 袋の中に、1から9までの番号を重複なく1つずつ記入したカードが9枚入っている。A,B,C,Dの4人のうちDがさいころを投げて、1の目が出たらAが、2または3の目が出たらBが、その他の目が出たらCが、袋の中からカードを1枚引き、カードに記入された番号を記録することを試行という。ただし、1度引いたカードは袋に戻さない。この試行を3回続けて行う。また、1回目の試行前のA,B,Cの点数をそれぞれ0としたうえで、以下の(a),(b)に従い、各回の試行後のA,B,Cの点数を定める。
(a)各回の試行においてカードを引いた人は、その回の試行前の自分の点数に、その回の試行で記録した番号を加え、試行後の点数とする。
(b)各回の試行においてカードを引いていない人は、その回の試行前の自分の点数を、そのまま試行後の点数とする。
(1)1回目の試行後、Bの点数が3の倍数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。ただし、0はすべての整数の倍数である。
(2)2回目の試行後、A,B,Cのうち、1人だけの点数が0である確率は$\frac{\boxed{ウエ}}{\boxed{オカ}}$である。
(3)2回目の試行後のAの点数が5以上となる確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(4)2回目の試行後のAの点数が5以上であるとき、3回目の試行後のA,B,Cの点数がすべて5以上である条件付き確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
この動画を見る
$\Large{\boxed{2}}$ 袋の中に、1から9までの番号を重複なく1つずつ記入したカードが9枚入っている。A,B,C,Dの4人のうちDがさいころを投げて、1の目が出たらAが、2または3の目が出たらBが、その他の目が出たらCが、袋の中からカードを1枚引き、カードに記入された番号を記録することを試行という。ただし、1度引いたカードは袋に戻さない。この試行を3回続けて行う。また、1回目の試行前のA,B,Cの点数をそれぞれ0としたうえで、以下の(a),(b)に従い、各回の試行後のA,B,Cの点数を定める。
(a)各回の試行においてカードを引いた人は、その回の試行前の自分の点数に、その回の試行で記録した番号を加え、試行後の点数とする。
(b)各回の試行においてカードを引いていない人は、その回の試行前の自分の点数を、そのまま試行後の点数とする。
(1)1回目の試行後、Bの点数が3の倍数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。ただし、0はすべての整数の倍数である。
(2)2回目の試行後、A,B,Cのうち、1人だけの点数が0である確率は$\frac{\boxed{ウエ}}{\boxed{オカ}}$である。
(3)2回目の試行後のAの点数が5以上となる確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(4)2回目の試行後のAの点数が5以上であるとき、3回目の試行後のA,B,Cの点数がすべて5以上である条件付き確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
【わかりやすく】同じものを含む順列の求め方を解説!【数学A / 場合の数】

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a,a,b,b,b,c,d$の7文字をすべて1列に並べる。
(1)全部で並べ方は何通りあるか。
(2)$c,d$がこの順になる並べ方は何通りあるか。
この動画を見る
$a,a,b,b,b,c,d$の7文字をすべて1列に並べる。
(1)全部で並べ方は何通りあるか。
(2)$c,d$がこの順になる並べ方は何通りあるか。
これなに?

福田のおもしろ数学166〜素数pのn乗の階乗はpで何回割り切れるか

福田のおもしろ数学163〜連続する奇数が互いに素である証明

福田の数学〜神戸大学2024年文系第2問〜さいころの目と約数に関する確率

単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
福田のおもしろ数学160〜星のカピイは能力を何個持てるか

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
この動画を見る
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
福田の数学〜神戸大学2024年理系第3問〜さいころの目と約数に関する確率

単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
福田のおもしろ数学155〜6の倍数である証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
この動画を見る
自然数$n$に対し、$n(n^2+5)$が6の倍数であることを示せ。
福田の数学〜大阪大学2024年理系第5問〜互いに素な整数の個数

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
この動画を見る
$\Large\boxed{5}$ 自然数1, 2, 3, ..., $n$のうち、$n$と互いに素であるものの個数を$f(n)$とする。
(1)自然数$a$, $b$, $c$及び相異なる素数$p$, $q$, $r$に対して、等式
$f(p^ap^bp^c)$=$p^{a-1}p^{b-1}p^{c-1}(p-1)(q-1)(r-1)$
が成り立つことを示せ。
(2)$f(n)$が$n$の約数となる5以上100以下の自然数$n$をすべて求めよ。
告白って成功確率50%なんじゃないん?

告白って成功確率50%なんじゃないん?

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
告白して付き合うか、振られるかの確率は50%?
この動画を見る
下記質問の解説動画です
告白して付き合うか、振られるかの確率は50%?
福田の数学〜名古屋大学2024年文系第3問〜反復試行の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。表と裏が出る確率がそれぞれ$\displaystyle\frac{1}{2}$のコインを$n$回投げ、以下のように得点を決める。
・最初に数直線上の原点に石を置き、コインを投げて表なら2、裏なら3だけ数直線上を正方向に石を移動させる。コインを$k$回投げた後の石の位置を$a_k$とする。
・$a_n$≠2$n$+2 の場合は得点を0、$a_n$≠2$n$+2 の場合は得点を$a_1$+$a_2$+...+$a_n$とする。
たとえば、$n$=3のとき、投げたコインが3回とも表のときは得点は0、投げたコインが順に裏、裏、表のときは得点は3+6+8=17 である。
(1)$n$解のうち裏の出る回数を$r$とするとき、$a_n$を求めよ。
(2)$n$=4とする。得点が0でない確率および25である確率をそれぞれ求めよ。
(3)$n$=9とする。得点が100である確率および奇数である確率をそれぞれ求めよ。
この動画を見る
$\Large\boxed{3}$ $n$を自然数とする。表と裏が出る確率がそれぞれ$\displaystyle\frac{1}{2}$のコインを$n$回投げ、以下のように得点を決める。
・最初に数直線上の原点に石を置き、コインを投げて表なら2、裏なら3だけ数直線上を正方向に石を移動させる。コインを$k$回投げた後の石の位置を$a_k$とする。
・$a_n$≠2$n$+2 の場合は得点を0、$a_n$≠2$n$+2 の場合は得点を$a_1$+$a_2$+...+$a_n$とする。
たとえば、$n$=3のとき、投げたコインが3回とも表のときは得点は0、投げたコインが順に裏、裏、表のときは得点は3+6+8=17 である。
(1)$n$解のうち裏の出る回数を$r$とするとき、$a_n$を求めよ。
(2)$n$=4とする。得点が0でない確率および25である確率をそれぞれ求めよ。
(3)$n$=9とする。得点が100である確率および奇数である確率をそれぞれ求めよ。
福田の数学〜名古屋大学2024年理系第4問〜反復試行の確率と漸化式と定積分の計算

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 袋の中にいくつかの赤玉の白玉が入っている。すべての玉に対する赤玉の割合を$p$(0≦$p$≦1)とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。
試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$とおく。
(1)$n$≧2に対して、$f(1)$と$f(2)$を求めよ。
(2)$k$=1,2,...,$n$に対して、等式
$f(k)$=$\displaystyle\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3)自然数$k$に対して、定積分$I$=$\displaystyle\int_0^{\frac{1}{2}}x^k(1-x)^kdx$ を求めよ。
この動画を見る
$\Large\boxed{4}$ 袋の中にいくつかの赤玉の白玉が入っている。すべての玉に対する赤玉の割合を$p$(0≦$p$≦1)とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。
試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$とおく。
(1)$n$≧2に対して、$f(1)$と$f(2)$を求めよ。
(2)$k$=1,2,...,$n$に対して、等式
$f(k)$=$\displaystyle\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3)自然数$k$に対して、定積分$I$=$\displaystyle\int_0^{\frac{1}{2}}x^k(1-x)^kdx$ を求めよ。
福田のおもしろ数学148〜円の面積

単元:
#数A#数Ⅱ#図形の性質#図形と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
左図(※動画参照)で4つの四角形はすべて面積が$16 \textrm{cm}^2$の正方形です。
円の面積を求めて下さい。
この動画を見る
左図(※動画参照)で4つの四角形はすべて面積が$16 \textrm{cm}^2$の正方形です。
円の面積を求めて下さい。
