数A
数A
どっちがでかい? エレガントな解法も

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\left(\dfrac{1}{2021}\right)^{2022}$VS $\left(\dfrac{1}{2022}\right)^{2021}$
この動画を見る
どちらが大きいか?
$\left(\dfrac{1}{2021}\right)^{2022}$VS $\left(\dfrac{1}{2022}\right)^{2021}$
共通テスト数学1A_第1問を簡単に解く方法教えます

単元:
#数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ について考える。
(1)$c=1$のとき、①の左辺を因数分解すると
$([ア]x+[イ])(x-[ウ])$
であるから、①の解は
$x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
であり、大きい方の解を$a$とすると
$\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。
(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
ともに無理数である場合もあるね。
$c$がどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ について考える。
(1)$c=1$のとき、①の左辺を因数分解すると
$([ア]x+[イ])(x-[ウ])$
であるから、①の解は
$x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
であり、大きい方の解を$a$とすると
$\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。
(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
ともに無理数である場合もあるね。
$c$がどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
福田のわかった数学〜高校1年生090〜確率(10)反復試行の確率(4)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(10) 反復試行(4)
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に
Aに戻った時を上がりとする。次の確率を求めよ。
(1)ちょうど1周で上がり (2)ちょうど2周で上がり
この動画を見る
数学$\textrm{A}$ 確率(10) 反復試行(4)
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に
Aに戻った時を上がりとする。次の確率を求めよ。
(1)ちょうど1周で上がり (2)ちょうど2周で上がり
整数問題 あの定理の証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
この動画を見る
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
独協医大 n進法

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0.2_{(a)}=0.12_{(b)}$
$a,b$の値を求めよ.
独協医大過去問
この動画を見る
$0.2_{(a)}=0.12_{(b)}$
$a,b$の値を求めよ.
独協医大過去問
福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
福田のわかった数学〜高校1年生088〜確率(8)反復試行の確率(2)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(2)
AとBが先に4勝したほうを勝ちとする試合をする。
1回の試合でAが勝つ確率をpとして引き分けはないものとする。
(1)6試合目でAが勝つ確率を求めよ。
(2)Aが勝つ確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(7) 反復試行(2)
AとBが先に4勝したほうを勝ちとする試合をする。
1回の試合でAが勝つ確率をpとして引き分けはないものとする。
(1)6試合目でAが勝つ確率を求めよ。
(2)Aが勝つ確率を求めよ。
#48 数検1級2次 過去問 整数問題

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$m,n$:正の整数
$3^m=n^2-117^2$を満たす$m,n$の値を求めよ。
この動画を見る
$m,n$:正の整数
$3^m=n^2-117^2$を満たす$m,n$の値を求めよ。
2通りで解説!!京都女子

単元:
#数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
CF=?
*図は動画内参照
京都女子高等学校
この動画を見る
CF=?
*図は動画内参照
京都女子高等学校
中学入試・高校入試頻出メネラウスの定理は使う?

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
メネラウスの定理が定期試験に出る頻度に関して解説していきます.
この動画を見る
メネラウスの定理が定期試験に出る頻度に関して解説していきます.
指数方程式

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$27^x-2・18^x+12^x=8^{x+\frac{1}{3}}$
この動画を見る
実数解を求めよ.
$27^x-2・18^x+12^x=8^{x+\frac{1}{3}}$
福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。
角度が出てないのに角度が出る問題 渋谷教育学園幕張高校

単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle AOB =?$
*図は動画内参照
渋谷教育学園幕張高校
この動画を見る
$\angle AOB =?$
*図は動画内参照
渋谷教育学園幕張高校
ざ・見掛け倒し

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{10000}n^n$
$=1^1+2^2+3^3+・・・・・・9999^{9999}+10000^{10000}$を3で割った余りを求めよ.
この動画を見る
$\displaystyle \sum_{n=1}^{10000}n^n$
$=1^1+2^2+3^3+・・・・・・9999^{9999}+10000^{10000}$を3で割った余りを求めよ.
福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(6) じゃんけん(2)
4人でじゃんけんをして負けたもの
から抜けていく。3回で1人の勝者
が決まる確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(6) じゃんけん(2)
4人でじゃんけんをして負けたもの
から抜けていく。3回で1人の勝者
が決まる確率を求めよ。
直角に凹ませました

変な指数方程式

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^x-2^x=\sqrt{6^x}$
この動画を見る
実数解を求めよ.
$3^x-2^x=\sqrt{6^x}$
整数問題 愛知高校

単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。
愛知高等学校
この動画を見る
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。
愛知高等学校
補助線どう引く?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB+BD=AC
x=?
*図は動画内参照
この動画を見る
AB+BD=AC
x=?
*図は動画内参照
福田のわかった数学〜高校1年生085〜確率(5)じゃんけんの確率(1)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) じゃんけん(1)
n人でじゃんけんを1回する。 $(n \geqq 3)$
(1)r人が勝つ確率を求めよ。 $(0 \lt r \lt n)$
(2)あいこになる確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(4) じゃんけん(1)
n人でじゃんけんを1回する。 $(n \geqq 3)$
(1)r人が勝つ確率を求めよ。 $(0 \lt r \lt n)$
(2)あいこになる確率を求めよ。
指数方程式

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
この動画を見る
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
比例式と整数

単元:
#数学(中学生)#中1数学#数A#比例・反比例#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
この動画を見る
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
難問!?まさかの答え。

単元:
#数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る
x=?
*図は動画内参照
福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
この動画を見る
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
千葉大(医)の類題 整数

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$
千葉大(医)過去問
この動画を見る
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$
千葉大(医)過去問
コインを投げる 確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
○×問題 コインを投げる
(1)2枚投げた時、表1枚裏1枚になる確率は$\frac{1}{2}$
(2)4枚投げた時、表2枚裏2枚になる確率は$\frac{1}{2}$
この動画を見る
○×問題 コインを投げる
(1)2枚投げた時、表1枚裏1枚になる確率は$\frac{1}{2}$
(2)4枚投げた時、表2枚裏2枚になる確率は$\frac{1}{2}$
福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(3)
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
この動画を見る
数学$\textrm{A}$確率(3)
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
【数A】確率:期待値の巧みな利用

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】
無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。
(出典 上級国家公務員試験より)
この動画を見る
【高校数学 数学A 場合の数と確率 期待値】
無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。
(出典 上級国家公務員試験より)
灘高校に受かるのは難だけど、この問題は難てこともない問題

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形と4つの半円
斜線部の面積は?
*図は動画内参照
灘高等学校
この動画を見る
長方形と4つの半円
斜線部の面積は?
*図は動画内参照
灘高等学校
整数問題基本

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
