点と直線
難関高校受験生必見!!放物線と比
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=x^2$ $\quad$ $y=\frac{1}{4}x^2$
a:b=?
*図は動画内参照
この動画を見る
$y=x^2$ $\quad$ $y=\frac{1}{4}x^2$
a:b=?
*図は動画内参照
高校数学:数学検定準1級1次:問題1,2 :対数不等式、2直線間の距離
単元:
#数Ⅱ#図形と方程式#指数関数と対数関数#点と直線#対数関数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
次の不等式を解きなさい。
$\log_{ \frac{1}{2}} 2x >\log_{ \frac{1}{2}} x^2-2x+3$
問題2
xy平面上の2直線$3x+4y-20=0$と$3x+4y+50=0$の間の距離を求めなさい。
この動画を見る
問題1
次の不等式を解きなさい。
$\log_{ \frac{1}{2}} 2x >\log_{ \frac{1}{2}} x^2-2x+3$
問題2
xy平面上の2直線$3x+4y-20=0$と$3x+4y+50=0$の間の距離を求めなさい。
福田の数学〜双曲線と直線の位置関係を考えよう〜明治大学2023年全学部統一Ⅲ第3問〜双曲線と直線
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
この動画を見る
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
【わかりやすく】直線に対して対象の点の座標を求めよう(数学Ⅱ 図形と方程式)
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
直線$y=x+3$に対して、点$A(-2,4)$と対称な点の座標を求めよ。
この動画を見る
直線$y=x+3$に対して、点$A(-2,4)$と対称な点の座標を求めよ。
【短時間でマスター!!】直線の方程式(平行と垂直)の求め方を解説!〔現役講師解説、数学〕
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
この動画を見る
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
サッカーボールの頂点の個数は? 共栄学園(東東京)
単元:
#数Ⅱ#点と直線#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている
この多面体の頂点の個数は?
共栄学園高等学校
この動画を見る
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている
この多面体の頂点の個数は?
共栄学園高等学校
内角を二等分する直線の式 立教新座
福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
【数Ⅱ】間違えやすい? 点と直線の距離の公式の覚え方
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
点と直線の距離の公式がどっちだっけ…となったとき、そんなときのための講義です。
この動画を見る
点と直線の距離の公式がどっちだっけ…となったとき、そんなときのための講義です。
慶應義塾大 直線の傾き
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2016慶応義塾大学過去問題
aは整数、aの値は?
$f(x)=x^3-x^2-x+c$
$A(0,f(x)),B(a,f(a))$
直線ABと$x=\frac{a}{3}$におけるf(x)の接線が直交する。
この動画を見る
2016慶応義塾大学過去問題
aは整数、aの値は?
$f(x)=x^3-x^2-x+c$
$A(0,f(x)),B(a,f(a))$
直線ABと$x=\frac{a}{3}$におけるf(x)の接線が直交する。
福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積
単元:
#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。
2023筑波大学理系過去問
この動画を見る
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。
2023筑波大学理系過去問
福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。
2023慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。
2023慶應義塾大学医学部過去問
福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。
203慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。
203慶應義塾大学医学部過去問
福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
この動画を見る
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。
2023北海道大学理系過去問
この動画を見る
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。
2023北海道大学理系過去問
福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。
2023東京大学文系過去問
この動画を見る
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。
2023東京大学文系過去問
福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
この動画を見る
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
この動画を見る
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。
(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。
2019早稲田大学商学部過去問
この動画を見る
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。
(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。
2019早稲田大学商学部過去問
放物線と直線
単元:
#数学(中学生)#数Ⅱ#図形と方程式#点と直線#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a}{b}=?$
*図は動画内参照
ラ・サール高等学校
この動画を見る
$\frac{a}{b}=?$
*図は動画内参照
ラ・サール高等学校
福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。
(3)円$(x-3)^2+(y-3)^2=5$とlが共有点を持たない確率は$\frac{\boxed{サ}}{\boxed{シ}}$である。
2022上智大学文系過去問
この動画を見る
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。
(3)円$(x-3)^2+(y-3)^2=5$とlが共有点を持たない確率は$\frac{\boxed{サ}}{\boxed{シ}}$である。
2022上智大学文系過去問
0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題
単元:
#数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.
ノートルダム女学院高校過去問
この動画を見る
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.
ノートルダム女学院高校過去問
福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。
2022早稲田大学教育学部過去問
この動画を見る
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。
2022早稲田大学教育学部過去問
よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
京都大過去問
この動画を見る
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
京都大過去問
対頂角が等しいのはなぜ? 気付けば一瞬
福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。
2022東京医科歯科大学理系過去問
この動画を見る
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。
2022東京医科歯科大学理系過去問
福田の数学〜千葉大学2022年理系第3問〜折り返された放物線と直線の交点の個数と囲まれる面積の最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)aを実数とする。$y=ax$のグラフと$y=x|x-2|$のグラフの交点の個数が
最大となる$a$の範囲を求めよ。
(2)$0 \leqq a \leqq 2$とする。$S(a)$を$y=ax$のグラフと$y=x|x-2|$のグラフで
囲まれる図形の面積とする。$S(a)$をaの式で表せ。
(3)(2)で求めた$S(a)$を最小にするaの値を求めよ。
2022千葉大学理系過去問
この動画を見る
次の問いに答えよ。
(1)aを実数とする。$y=ax$のグラフと$y=x|x-2|$のグラフの交点の個数が
最大となる$a$の範囲を求めよ。
(2)$0 \leqq a \leqq 2$とする。$S(a)$を$y=ax$のグラフと$y=x|x-2|$のグラフで
囲まれる図形の面積とする。$S(a)$をaの式で表せ。
(3)(2)で求めた$S(a)$を最小にするaの値を求めよ。
2022千葉大学理系過去問
福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。
2022神戸大学理系過去問
この動画を見る
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。
2022神戸大学理系過去問
【数学IIB】図形と方程式まとめ(内分外分、直線の方程式、円の方程式、平行移動)
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
中心(1,4)、半径3の円の方程式は?
この動画を見る
中心(1,4)、半径3の円の方程式は?