三角関数

【数Ⅱ】【三角関数】三角関数の合成7 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2(sinx+cosx)+2sinxcosx+1 (0 x 2π)
この動画を見る
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2(sinx+cosx)+2sinxcosx+1 (0
【数Ⅱ】【三角関数】三角関数の合成6 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 y=asinx+bcosxはx= で最大値をとり, また, 最小値 -5である。定数a,bの値を求めよ。
この動画を見る
関数 y=asinx+bcosxはx=
【数Ⅱ】【三角関数】三角関数の合成5 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2sin x+2 sinxcosx+4cos x (0 x 2π)
この動画を見る
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2sin
【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
0 x πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+ cosx
(2) y=2sinx+cosx
この動画を見る
0
(1) y=sinx+
(2) y=2sinx+cosx
【数Ⅱ】【三角関数】三角関数の合成3 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値を求めよ。(1),(2)については、そのときのxの値も求めよ。
(1) y=-sinx+cosx(0 x 2π)
(2) y=sin2x- cos2x(0 x π)
(3) y=4sinx+3cosx
(4) y= sinx-3cosx
この動画を見る
次の関数の最大値, 最小値を求めよ。(1),(2)については、そのときのxの値も求めよ。
(1) y=-sinx+cosx(0
(2) y=sin2x-
(3) y=4sinx+3cosx
(4) y=
【数Ⅱ】【三角関数】三角関数の合成2 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
0 x 2πのとき、次の不等式を解け。
(1) sinx+cosx
(2) cosx sinx
(3) sinx- cosx
この動画を見る
0
(1) sinx+cosx
(2) cosx
(3)
【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
0 x 2πのとき、次の方程式を解け。
(1)
(2)
(3)
この動画を見る
0
(1)
(2)
(3)
【数Ⅱ】【三角関数】加法定理の応用7 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
この動画を見る
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
【数Ⅱ】【三角関数】加法定理の応用6 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。また、その周期をいえ。
(1) y=cos² x
(2) y=3sin² x+cos² x
この動画を見る
次の関数のグラフをかけ。また、その周期をいえ。
(1) y=cos² x
(2) y=3sin² x+cos² x
【数Ⅱ】【三角関数】加法定理の応用5 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
-π/2≦x≦π/2 とする。関数 y=2sinx-cos2x の最大値、最小値と、そのときのxの値を求めよ。
この動画を見る
-π/2≦x≦π/2 とする。関数 y=2sinx-cos2x の最大値、最小値と、そのときのxの値を求めよ。
【数Ⅱ】【三角関数】加法定理の応用4 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の不等式を解け。
(1)cos2x<sinx
(2)cos2x≧cos² x
(3)cosx+sin2x>0
この動画を見る
0≦x<2π のとき、次の不等式を解け。
(1)cos2x<sinx
(2)cos2x≧cos² x
(3)cosx+sin2x>0
【数Ⅱ】【三角関数】加法定理の応用3 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
この動画を見る
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
【数Ⅱ】【三角関数】加法定理の応用2 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
tanα=t のときcos² α ,sin2α ,cos2α を t で表せ。
この動画を見る
tanα=t のときcos² α ,sin2α ,cos2α を t で表せ。
【数Ⅱ】【三角関数】加法定理の応用1 ※問題文は概要欄

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
等式cos3α+sin3α=(cosα-sinα)(1+2sin2α)を証明せよ。
この動画を見る
等式cos3α+sin3α=(cosα-sinα)(1+2sin2α)を証明せよ。
福田のおもしろ数学378〜ある漸化式で定められる数列の最初の2025項が正で2026番目が初めて負になることが可能かどうかの検証

単元:
#数Ⅱ#三角関数#加法定理とその応用#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
で定まる数列 に対し、 がすべて正であり、 となることは可能か。
この動画を見る
大学入試問題#916「これは受験生に失礼」 #東海大学医学部2024 #三角関数

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師:
ますただ
問題文全文(内容文):
のとき、 の値を求めよ。
出典:2024年東海大学医学部
この動画を見る
のとき、
出典:2024年東海大学医学部
大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
ますただ
問題文全文(内容文):
を満たす整数 を求めよ。
出典:2014年奈良県立医科大学
この動画を見る
出典:2014年奈良県立医科大学
*tanの加法定理を覚える動画です

福田の数学〜立教大学2024年理学部第1問(1)〜三角方程式の基本

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)実数 が = を満たすとき、 の値は である。
この動画を見る
福田の数学〜慶應義塾大学2024年経済学部第1問(2)〜三角関数への置き換えによる分数関数の最大最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(2) は| |< の範囲の定数とする。 = とおくと、 = かつ = +1)であるので、 とすると、
+
と表せる。ただし、 = , = である。また、| |≦1に対応する の範囲が| |≦ であることに注意すると、| |≦1における の取りうる値の最大値は 、最小値は である。
この動画を見る
(2)
と表せる。ただし、
福田のおもしろ数学170〜タンジェントに関する複雑な三角方程式

【高校数学】三角関数を用いる積分(発展編)【数学のコツ】

【高校数学】三角関数を用いる積分(応用編)【数学のコツ】

【高校数学】三角関数を用いる積分(基本編)【数学のコツ】

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】
【高校数学】全て覚える必要はない!?三角関数の性質のコツ【数学のコツ】

福田のおもしろ数学142〜チェビシェフの多項式に関する証明

単元:
#数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
を正の整数とする。 は の 次式で表されることを証明してください。
この動画を見る
福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円 : + =1 に接する直線で、 切片、 切片がともに正であるものを とする。 と と 軸により囲まれた部分の面積を 、 と と 軸により囲まれた部分の面積を とする。 + が最小となるとき、 - の値を求めよ。
この動画を見る
福田のおもしろ数学129〜三角関数の最大問題

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

単元:
#数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師:
福田次郎
問題文全文(内容文):
上の数表において、 , , , は関数
, , ,
のうちのどれかである。どれがどれか?
ただし、 , , は0< < < < , = を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る
上の数表において、
のうちのどれかである。どれがどれか?
ただし、