三角関数
島根大(医】三角関数 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
この動画を見る
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
久留米(医) 5倍角 Japanese university entrance exam questions
単元:
#数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
この動画を見る
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
京都大 三角関数 4次方程式 高校数学 大学受験 Japanese university entrance exam questions Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
この動画を見る
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
弘前大 三角関数 正十角形の面積 高校数学 大学入試 Japanese university entrance exam questions
単元:
#数Ⅱ#複素数と方程式#複素数平面#三角関数#複素数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
この動画を見る
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
この動画を見る
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
福田の一夜漬け数学〜折れ線の最小(4)〜受験編、一橋大学の問題に挑戦!
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
この動画を見る
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。
一橋大学過去問
和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
この動画を見る
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
九州大学 三倍角 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
この動画を見る
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
福田の一夜漬け数学〜絶対不等式(2)〜受験編
単元:
#数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)
単元:
#数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
この動画を見る
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
組立除法、三角関数の合成、視聴者からの質問への返答
単元:
#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#加法定理とその応用#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
組立除法、三角関数の合成、視聴者からの質問への返答です.
\begin{array}{r}
x-α\enclose{longdiv}{ax^3+bx^2+cx+d\phantom{0}} \\[-3pt]
\end{array}
この動画を見る
組立除法、三角関数の合成、視聴者からの質問への返答です.
\begin{array}{r}
x-α\enclose{longdiv}{ax^3+bx^2+cx+d\phantom{0}} \\[-3pt]
\end{array}
【数学】3分で和積公式が馬鹿でもわかる考え方
【数学】4分で積和公式が馬鹿でもわかる考え方
弧度法を使う理由
単元:
#数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
弧度法を使う理由を解説していきます.
この動画を見る
弧度法を使う理由を解説していきます.
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理
この動画を見る
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理