三角関数
【わかりやすく】三角方程式(2次方程式を利用)【数学Ⅰ三角比】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の等式を満たす$\theta$を求めよ。
$2\sin^2\theta-3\cos\theta=0$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の等式を満たす$\theta$を求めよ。
$2\sin^2\theta-3\cos\theta=0$
【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$
(2)
$45^{ \circ }$
(3)
$120^{ \circ }$
(4)
$-90^{ \circ }$
(5)
$108^{ \circ }$
(6)
$390^{ \circ }$
(7)
$\displaystyle \frac{\pi}{3}$
(8)
$\displaystyle \frac{7}{6}\pi$
(9)
$\displaystyle \frac{9}{4}\pi$
(10)
$-\displaystyle \frac{5}{12}n$
(11)
$\displaystyle \frac{11}{2}\pi$
(12)
$3$
この動画を見る
次の角を弧度法で表せ。
(1)
$30^{ \circ }$
(2)
$45^{ \circ }$
(3)
$120^{ \circ }$
(4)
$-90^{ \circ }$
(5)
$108^{ \circ }$
(6)
$390^{ \circ }$
(7)
$\displaystyle \frac{\pi}{3}$
(8)
$\displaystyle \frac{7}{6}\pi$
(9)
$\displaystyle \frac{9}{4}\pi$
(10)
$-\displaystyle \frac{5}{12}n$
(11)
$\displaystyle \frac{11}{2}\pi$
(12)
$3$
cosの和を求める
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}$を求めよ
この動画を見る
$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}$を求めよ
福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る
2022年度第2回全統記述高2模試全問解説動画です!
福田の数学〜立教大学2023年経済学部第1問(1)〜三角関数の最小値
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)関数$y$=4$\cos^2\theta$-$4\sin\theta$-5 の最小値は$\boxed{\ \ ア\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (1)関数$y$=4$\cos^2\theta$-$4\sin\theta$-5 の最小値は$\boxed{\ \ ア\ \ }$である。
福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART2
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART1
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$:正の整数
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ
出典:1937年東京帝国大学 入試問題
この動画を見る
$n$:正の整数
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ
出典:1937年東京帝国大学 入試問題
三角関数の極限
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
関西医科大学過去問題
$\displaystyle\lim_{(x \to \pi)}\frac{sinx}{x^2-\pi^2}$
この動画を見る
関西医科大学過去問題
$\displaystyle\lim_{(x \to \pi)}\frac{sinx}{x^2-\pi^2}$
福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。
2023東北大学文系過去問
この動画を見る
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。
2023東北大学文系過去問
福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。
2023東北大学理系過去問
福田の数学〜慶應義塾大学2023年看護医療学部第2問(1)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)0≦x≦π のとき、$\sqrt3\sin x$+$\cos x$=$\sqrt2$を解くと$x$=$\boxed{\ \ コ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
この動画を見る
$\Large\boxed{2}$ (1)0≦x≦π のとき、$\sqrt3\sin x$+$\cos x$=$\sqrt2$を解くと$x$=$\boxed{\ \ コ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
意外と差がつく?しっかりと取りたい問題です【大阪大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#三角関数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
大阪大過去問
この動画を見る
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
大阪大過去問
なんやこれ?
福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
この動画を見る
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。
2023慶應義塾大学薬学部過去問
【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。
京都大過去問
この動画を見る
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。
京都大過去問
福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
この動画を見る
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
この動画を見る
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)
単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)
単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限
単元:
#大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$
出典:2013年電気通信大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$
出典:2013年電気通信大学 入試問題
大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限
単元:
#大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$
出典:2014年電気通信大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$
出典:2014年電気通信大学 入試問題
大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限
単元:
#大学入試過去問(数学)#三角関数#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$
出典:2009年電気通信大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$
出典:2009年電気通信大学 入試問題
2023京都大学 正五角形の一辺の長さ
単元:
#数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\cos2\theta,\cos3\theta$を$\cos\theta$を用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.
2023京都大過去問
この動画を見る
(1)$\cos2\theta,\cos3\theta$を$\cos\theta$を用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.
2023京都大過去問
2変数関数の値域 日大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0,y \gt 0$において$\dfrac{2x^2-4xy+7y^2}{x^2+y^2}$のとり得る範囲を求めよ.
日大過去問
この動画を見る
$x\gt 0,y \gt 0$において$\dfrac{2x^2-4xy+7y^2}{x^2+y^2}$のとり得る範囲を求めよ.
日大過去問
福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。
2018東北大学理系過去問
この動画を見る
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。
2018東北大学理系過去問
大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分
単元:
#大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$
出典:2003年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$
出典:2003年横浜国立大学 入試問題
ハルハルさんの積分問題(準備) 難易度高めの最後まで気が抜けない!!
単元:
#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
この動画を見る
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
多くの単元が絡んだ問題!解けますか?【一橋大学】【数学 入試問題】
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#三角関数#指数関数と対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0≦θ≦2\pi$とする。$\log_{ 2 }(4\sin^2θ+3\cosθ-4),$
$\log_{ 2 }(-4\cos^3θ+3\cosθ+1)$がともに整数となるような$θ$の値をすべて求めよ。
一橋大過去問
この動画を見る
$0≦θ≦2\pi$とする。$\log_{ 2 }(4\sin^2θ+3\cosθ-4),$
$\log_{ 2 }(-4\cos^3θ+3\cosθ+1)$がともに整数となるような$θ$の値をすべて求めよ。
一橋大過去問