対数関数

10大阪府教員採用試験(数学:2番 微積)意外と沼にハマりがち

単元:
#数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#定積分#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣ $f(x) = \frac{x}{1+x^2}$
f(α)=f(β) , 0 < α < β のとき$\int_α^β \frac{x}{1+x^2}dx= log_β$を示せ
この動画を見る
2⃣ $f(x) = \frac{x}{1+x^2}$
f(α)=f(β) , 0 < α < β のとき$\int_α^β \frac{x}{1+x^2}dx= log_β$を示せ
岐阜薬科大 対数の不等式 良問

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.
岐阜薬科大過去問
この動画を見る
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.
岐阜薬科大過去問
【解けたら上位!】対数の難問 数学II

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】対数の難問解説動画です
-----------------
(1)$log_{10}2 \gt 0.3$を示せ
(2)$log_{10}(M+N) \geqq \displaystyle \frac{1}{2}(log_{10}M+log_{10}N)+log_{10} 2$を示せ
(3)$log_{10} 13\gt 1.1$を示せ
この動画を見る
【数学II】対数の難問解説動画です
-----------------
(1)$log_{10}2 \gt 0.3$を示せ
(2)$log_{10}(M+N) \geqq \displaystyle \frac{1}{2}(log_{10}M+log_{10}N)+log_{10} 2$を示せ
(3)$log_{10} 13\gt 1.1$を示せ
16愛知県教員採用試験(数学:5番 対数,相加平均・相乗平均)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
5⃣$a=log_3x$ , $b=log_4y$
a+2b=3のときx+yの最小値を求めよ。
この動画を見る
5⃣$a=log_3x$ , $b=log_4y$
a+2b=3のときx+yの最小値を求めよ。
早稲田大(国際教養)対数とガウス記号

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.
早稲田(国際教)過去問
この動画を見る
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.
早稲田(国際教)過去問
一橋大 漸化式&対数

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
この動画を見る
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
19神奈川県教員採用試験(数学:10番 数列・対数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
この動画を見る
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
16大阪府教員採用試験(数学:高校1番 積分)

単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
1⃣ $f(x)=\int_1^e |logt-logx|dt (1 \leqq x \leqq e)$
(1)f(x)を求めよ。
(2)f(x)の最大値、最小値を求めよ。
この動画を見る
1⃣ $f(x)=\int_1^e |logt-logx|dt (1 \leqq x \leqq e)$
(1)f(x)を求めよ。
(2)f(x)の最大値、最小値を求めよ。
長崎大 対数の基本

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\log_{2}x^2=2+\log_2 \vert x-2 \vert $を解け.
長崎大過去問
この動画を見る
$\log_{2}x^2=2+\log_2 \vert x-2 \vert $を解け.
長崎大過去問
11奈良県教員採用試験(数学:高校3番 逆関数と積分)

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
この動画を見る
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
16京都府教員採用試験(数学:2番 背理法)

単元:
#数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣ $\log_{ 2 } 3$は無理数を示せ。
この動画を見る
2⃣ $\log_{ 2 } 3$は無理数を示せ。
17東京都教員採用試験(数学:3番 x軸回転体)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
この動画を見る
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
【東京大学2007[6]】不等式の証明、log2の評価

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
受験メモ山本
問題文全文(内容文):
$(1)0 \lt x\lt aのとき$
\begin{equation}
\frac{2x}{a} \lt \int^{a+x}_{a-x} \frac{1}{t}dt \lt x(\frac{1}{a+x}+\frac{1}{a-x})
\end{equation}を示せ.
$(2)0.68\lt log2\lt 0.71を示せ.$
この動画を見る
$(1)0 \lt x\lt aのとき$
\begin{equation}
\frac{2x}{a} \lt \int^{a+x}_{a-x} \frac{1}{t}dt \lt x(\frac{1}{a+x}+\frac{1}{a-x})
\end{equation}を示せ.
$(2)0.68\lt log2\lt 0.71を示せ.$
上智大 住宅ローンは月々いくら?

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$
2018上智大過去問
この動画を見る
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$
2018上智大過去問
19東京都採用試験(数学:対数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣-(2)
$2^x=3^y=18^z={}^3\sqrt6$
(1)$\frac{1}{x} + \frac{1}{y}$
(2)$\frac{1}{x} - \frac{1}{y}+\frac{2}{z}$
この動画を見る
2⃣-(2)
$2^x=3^y=18^z={}^3\sqrt6$
(1)$\frac{1}{x} + \frac{1}{y}$
(2)$\frac{1}{x} - \frac{1}{y}+\frac{2}{z}$
対数 札幌医科大

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
この動画を見る
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
群馬大(医)

単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ
出典:群馬大学医学部 過去問
この動画を見る
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ
出典:群馬大学医学部 過去問
帝京大(医)整数の性質

単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$N=2^{20}7^{10}$
(1)
$N$を5で割った余りを求めよ
(2)
$N$の正の約数
全部の積を$M$
$log_NM$の値を求めよ
出典:2005年帝京大学医学部 過去問
この動画を見る
$N=2^{20}7^{10}$
(1)
$N$を5で割った余りを求めよ
(2)
$N$の正の約数
全部の積を$M$
$log_NM$の値を求めよ
出典:2005年帝京大学医学部 過去問
光文社新書「中学の知識でオイラーの公式がわかる」Vol.8対数 log

大分大 対数の基本

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{10}2$の小数第一位を求めよ
$2^{21}$と$5^9$の大小比較
出典:大分大学 過去問
この動画を見る
$log_{10}2$の小数第一位を求めよ
$2^{21}$と$5^9$の大小比較
出典:大分大学 過去問
中央大(法)ガウス記号 対数

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ
出典:2015年中央大学法学部 過去問
この動画を見る
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ
出典:2015年中央大学法学部 過去問
もっちゃんと学ぶ 対数 早稲田の過去問もやるよ

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
この動画を見る
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
九州大 三次関数 極値の差 ヨビノリ技

単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ
出典:2019年九州大学 過去問
この動画を見る
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ
出典:2019年九州大学 過去問
名古屋市立 4次関数と接線

単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる
(1)
$a$の範囲を求めよ
(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ
出典:1995年名古屋市立大学 過去問
この動画を見る
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる
(1)
$a$の範囲を求めよ
(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ
出典:1995年名古屋市立大学 過去問
岡山大 対数方程式の実数解の個数

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$
出典:1995年岡山大学 過去問
この動画を見る
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$
出典:1995年岡山大学 過去問
熊本大 対数関数の最大値

単元:
#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
この動画を見る
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
大阪大 対数方程式 恒等式

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ
出典:2011年大阪大学 過去問
この動画を見る
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ
出典:2011年大阪大学 過去問
早稲田大 対数 2次方程式 負の実数解

単元:
#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
この動画を見る
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
首都大学 対数 整数問題

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ
出典:2008年東京都立大学 過去問
この動画を見る
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ
出典:2008年東京都立大学 過去問
【数学II】必殺!完璧攻略法!「小数第何位に初めて0でない数字が表れるか」

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。
この動画を見る
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。