対数関数
16京都府教員採用試験(数学:2番 背理法)
単元:
#数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣ $\log_{ 2 } 3$は無理数を示せ。
この動画を見る
2⃣ $\log_{ 2 } 3$は無理数を示せ。
17東京都教員採用試験(数学:3番 x軸回転体)
単元:
#数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
この動画を見る
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
【東京大学2007[6]】不等式の証明、log2の評価
上智大 住宅ローンは月々いくら?
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$
2018上智大過去問
この動画を見る
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$
2018上智大過去問
対数 札幌医科大
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
この動画を見る
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
群馬大(医)
単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ
出典:群馬大学医学部 過去問
この動画を見る
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ
出典:群馬大学医学部 過去問
帝京大(医)整数の性質
単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$N=2^{20}7^{10}$
(1)
$N$を5で割った余りを求めよ
(2)
$N$の正の約数
全部の積を$M$
$log_NM$の値を求めよ
出典:2005年帝京大学医学部 過去問
この動画を見る
$N=2^{20}7^{10}$
(1)
$N$を5で割った余りを求めよ
(2)
$N$の正の約数
全部の積を$M$
$log_NM$の値を求めよ
出典:2005年帝京大学医学部 過去問
光文社新書「中学の知識でオイラーの公式がわかる」Vol.8対数 log
大分大 対数の基本
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{10}2$の小数第一位を求めよ
$2^{21}$と$5^9$の大小比較
出典:大分大学 過去問
この動画を見る
$log_{10}2$の小数第一位を求めよ
$2^{21}$と$5^9$の大小比較
出典:大分大学 過去問
中央大(法)ガウス記号 対数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ
出典:2015年中央大学法学部 過去問
この動画を見る
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ
出典:2015年中央大学法学部 過去問
もっちゃんと学ぶ 対数 早稲田の過去問もやるよ
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
この動画を見る
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
九州大 三次関数 極値の差 ヨビノリ技
単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ
出典:2019年九州大学 過去問
この動画を見る
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ
出典:2019年九州大学 過去問
名古屋市立 4次関数と接線
単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる
(1)
$a$の範囲を求めよ
(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ
出典:1995年名古屋市立大学 過去問
この動画を見る
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる
(1)
$a$の範囲を求めよ
(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ
出典:1995年名古屋市立大学 過去問
岡山大 対数方程式の実数解の個数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$
出典:1995年岡山大学 過去問
この動画を見る
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$
出典:1995年岡山大学 過去問
熊本大 対数関数の最大値
単元:
#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
この動画を見る
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
大阪大 対数方程式 恒等式
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ
出典:2011年大阪大学 過去問
この動画を見る
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ
出典:2011年大阪大学 過去問
早稲田大 対数 2次方程式 負の実数解
単元:
#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
この動画を見る
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
首都大学 対数 整数問題
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ
出典:2008年東京都立大学 過去問
この動画を見る
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ
出典:2008年東京都立大学 過去問
【数学II】必殺!完璧攻略法!「小数第何位に初めて0でない数字が表れるか」
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。
この動画を見る
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。
広島大 対数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$log_{2}3$は無理数、証明せよ
(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ
(3)
$log_{2}3$の小数第一位の数を求めよ
出典:広島大学 過去問
この動画を見る
(1)
$log_{2}3$は無理数、証明せよ
(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ
(3)
$log_{2}3$の小数第一位の数を求めよ
出典:広島大学 過去問
大阪大 対数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$
(1)
$m,n$を求めよ
(2)
$a \gt \displaystyle \frac{2}{3}$を示せ
出典:2006年大阪大学 過去問
この動画を見る
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$
(1)
$m,n$を求めよ
(2)
$a \gt \displaystyle \frac{2}{3}$を示せ
出典:2006年大阪大学 過去問
広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
この動画を見る
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
東京学芸大 対数方程式の実数解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京学芸大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$log_{2}(x+3)+2log_{2}(3-x)=a$
実数解の個数
出典:1996年東京学芸大学 過去問
この動画を見る
$log_{2}(x+3)+2log_{2}(3-x)=a$
実数解の個数
出典:1996年東京学芸大学 過去問
聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数
出典:2010年聖マリアンナ医科大学 過去問
この動画を見る
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数
出典:2010年聖マリアンナ医科大学 過去問
東工大 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
この動画を見る
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$
$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ
出典:東京工業大学 過去問
【高校数学】対数関数1.5~例題・応用~【数学Ⅱ】
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
この動画を見る
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
この動画を見る
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
この動画を見る
2018年度センター試験・数学ⅡB・過去問解説動画です
北海道大 2次方程式 対数方程式 解の位置関係 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'84北海道大学過去問題
m>2 実数
$x^2-2^{m+1}x+3・2^m=0$・・・①
$2log_2x-log_2(x-1)=m$・・・②
(1)①、②はそれぞれ2つの異なる実数解をもつことを示せ
(2)①の解の1つだけが②の2つの解の間にあることを示せ
この動画を見る
'84北海道大学過去問題
m>2 実数
$x^2-2^{m+1}x+3・2^m=0$・・・①
$2log_2x-log_2(x-1)=m$・・・②
(1)①、②はそれぞれ2つの異なる実数解をもつことを示せ
(2)①の解の1つだけが②の2つの解の間にあることを示せ