数Ⅱ
【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
この動画を見る
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
【数Ⅱ】三角関数:2倍角の公式の利用! 直線y=1/3 xが直線y=axとx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
直線$y=\dfrac{1}{3}$ xが直線$y=ax$とx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。
この動画を見る
直線$y=\dfrac{1}{3}$ xが直線$y=ax$とx軸の正の向きとのなす角の二等分線となっているとき、aの値を求めよ。
19奈良県教員採用試験(数学:2番 三角関数)
単元:
#数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
京都大 複素数
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+i)^n+(1-i)^n \gt 10^{10}$をみたす最小の自然数$n$を求めよ.
$0.3 \lt \log_{10}2 \lt 0.302$
京大過去問
この動画を見る
$(1+i)^n+(1-i)^n \gt 10^{10}$をみたす最小の自然数$n$を求めよ.
$0.3 \lt \log_{10}2 \lt 0.302$
京大過去問
京都大学 5倍角の公式
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.
1996京都大過去問
この動画を見る
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.
1996京都大過去問
素数判定
単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$30^{17}+17^{30}$は素数か.
この動画を見る
$30^{17}+17^{30}$は素数か.
【コツ】三角関数のグラフの書き方
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$
(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$
(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
この動画を見る
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$
(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$
(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
【数Ⅱ】中高一貫校問題集3(数式・関数編)376:図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は?
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
この動画を見る
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
【数Ⅱ】中高一貫校用問題集(数式・関数編)図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は?
単元:
#数Ⅱ#図形と方程式#数学(高校生)
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^2+y^2-2mx-2m-2=0$がmに関係なく通る点は?
この動画を見る
$x^2+y^2-2mx-2m-2=0$がmに関係なく通る点は?
関西学院大(法)複素数の二次方程式
【数Ⅰ】数と式:次の計算をせよ。18ab²÷(-3ab)²×(-a²b)³
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。
$18ab^2\div(-3ab)^2\times(-a^2b)^3$
この動画を見る
次の計算をせよ。
$18ab^2\div(-3ab)^2\times(-a^2b)^3$
【数Ⅱ】微分法と積分法:関数の極大・極小 関数f(x)=x³-3x²+2のグラフを描け!!
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³-3x²+2のグラフを描け
この動画を見る
関数f(x)=x³-3x²+2のグラフを描け
【数Ⅱ】指数関数・対数関数:大小比較② 次の各組の数の大小を不等号を用いて表せ。(2)1/25の3乗根, 1/√5, 1/125の3乗根
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(2)$\dfrac{1}{25}$の3乗根, $\sqrt{\dfrac{1}{\sqrt5}}$, $\dfrac{1}{125}$の3乗根
この動画を見る
次の各組の数の大小を不等号を用いて表せ。
(2)$\dfrac{1}{25}$の3乗根, $\sqrt{\dfrac{1}{\sqrt5}}$, $\dfrac{1}{125}$の3乗根
【数Ⅱ】指数関数・対数関数:大小比較③ 次の各組の数の大小を不等号を用いて表せ。(3)√2, 3の3乗根, 6の6乗根
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(3)$\sqrt2$ 3の3乗根, 6の6乗根
この動画を見る
次の各組の数の大小を不等号を用いて表せ。
(3)$\sqrt2$ 3の3乗根, 6の6乗根
【数Ⅱ】指数関数・対数関数:大小比較① 次の各組の数の大小を不等号を用いて表せ。(1)2の1/2乗, 4の1/4乗, 8の1/8乗
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
この動画を見る
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
【数Ⅱ】図形と方程式:奇跡的な軌跡の解法③ PだけじゃないてQも動く!?
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材:
#高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Qがx²+y²=16上を動くとき、点A(8,0)と点Qを結ぶ線分AQの中点Pの軌跡を求めよ。
この動画を見る
点Qがx²+y²=16上を動くとき、点A(8,0)と点Qを結ぶ線分AQの中点Pの軌跡を求めよ。
【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材:
#高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
この動画を見る
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
【数Ⅱ】図形と方程式:奇跡的な軌跡の解法① 2点から等距離となる軌跡は??
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材:
#高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(-2,3),B(4,-1)から等距離にある点Pの軌跡を求めよ。
この動画を見る
A(-2,3),B(4,-1)から等距離にある点Pの軌跡を求めよ。
【難問解説】「解と係数の関係」と「判別式」を利用した最大・最小問題【半分 for you 動画】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
「解と係数の関係」と「判別式」を利用した最大・最小問題
-----------------
実数$x、y、z$は$x+y+z=0,x^2-x-1=yz$を満たす。
$x^3+y^3+z^3$のn最大値・最小値と、そのときの$x$の値を求めよ。
この動画を見る
「解と係数の関係」と「判別式」を利用した最大・最小問題
-----------------
実数$x、y、z$は$x+y+z=0,x^2-x-1=yz$を満たす。
$x^3+y^3+z^3$のn最大値・最小値と、そのときの$x$の値を求めよ。
早稲田大(国際教養)対数とガウス記号
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.
早稲田(国際教)過去問
この動画を見る
$x\gt 0$とする.
$m=\left[\log_{10}\dfrac{3\sqrt x}{20}\right]$
$n=\left[\log_{10}\dfrac{800}{x}\right]$
$3m+n$のとりうる値を求めよ.
早稲田(国際教)過去問
18愛知県教員採用試験(数学:6番 指数関数)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
この動画を見る
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
一橋大 漸化式&対数
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
この動画を見る
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
17京都府教員採用試験(数学:共通4番 組合せ)
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
この動画を見る
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
慶應義塾大 3次方程式が有理数解をもつ条件
単元:
#数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.
慶應義塾大過去問
この動画を見る
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.
慶應義塾大過去問
【高校数学】円と直線の交点【連立方程式の同値変形】
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
受験メモ山本
問題文全文(内容文):
x²+y²=4
y=3x-2
交点を求めよ
連立をするとき余計な解が出てきたことはありませんか?
なぜそういうことがおきるかを解説します!
この動画を見る
x²+y²=4
y=3x-2
交点を求めよ
連立をするとき余計な解が出てきたことはありませんか?
なぜそういうことがおきるかを解説します!
16神奈川県教員採用試験(数学:5番 剰余の定理)
19神奈川県教員採用試験(数学:10番 数列・対数)
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
この動画を見る
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
【数学Ⅱ】図形と方程式 領域の難問を打破する!!
単元:
#数Ⅱ#図形と方程式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】図形と方程式 領域の難問解説動画です
-----------------
直線$2kx+y+k^=0…①$における$k$がすべての実数を満たしながら動くとき、直線①が通る領域を図示せよ。
この動画を見る
【数学Ⅱ】図形と方程式 領域の難問解説動画です
-----------------
直線$2kx+y+k^=0…①$における$k$がすべての実数を満たしながら動くとき、直線①が通る領域を図示せよ。
18神奈川県教員採用試験(数学:6番 解と係数の関係)
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
6⃣$x^3+kx^2+2x+10=0$の解がx=-2、α、βのとき、$α^2+β^2$の値を求めよ。
この動画を見る
6⃣$x^3+kx^2+2x+10=0$の解がx=-2、α、βのとき、$α^2+β^2$の値を求めよ。
18愛知県教員採用試験(数学:8番 面積の最小値)
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
8⃣(1,0)を通る直線lと$y=x^2-2$で囲まれる図形の面積Sの最小値を求めよ。
この動画を見る
8⃣(1,0)を通る直線lと$y=x^2-2$で囲まれる図形の面積Sの最小値を求めよ。