数Ⅱ
大学入試問題#797「たぶん部分積分でもいけそう」 #名古屋工業大学(2014) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{log\ 2}^{log\ 3} \displaystyle \frac{xe^x}{(e^x-1)^2} dx$
出典:2014年名古屋工業大学
この動画を見る
$\displaystyle \int_{log\ 2}^{log\ 3} \displaystyle \frac{xe^x}{(e^x-1)^2} dx$
出典:2014年名古屋工業大学
大学入試問題#796「解法は、ほぼ1択か」 #横浜国立大学(2024) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\sqrt{ 3 }} \displaystyle \frac{e^{3x}+4e^{2x}+e^x}{e^{4x}+2e^{2x}+1}dx$
出典:2024年横浜国立大学
この動画を見る
$\displaystyle \int_{0}^{log\sqrt{ 3 }} \displaystyle \frac{e^{3x}+4e^{2x}+e^x}{e^{4x}+2e^{2x}+1}dx$
出典:2024年横浜国立大学
福田のおもしろ数学116〜円の内部の点(a,b)に対してax+by=r^2はどんな直線を表しているか
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ の内部の点($a$,$b$)に対して直線$ax$+$by$=$r^2$ はどんな直線か。ただし、($a$,$b$)$\ne$(0,0)とする。
この動画を見る
円$x^2$+$y^2$=$r^2$ の内部の点($a$,$b$)に対して直線$ax$+$by$=$r^2$ はどんな直線か。ただし、($a$,$b$)$\ne$(0,0)とする。
#会津大学(2015) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^3x\ dx$
出典:2015年会津大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^3x\ dx$
出典:2015年会津大学
福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
#日本工業大学(2021) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$
出典:2021年日本工業大学
この動画を見る
$\displaystyle \int_{2}^{4} log_2\ x\ dx$
出典:2021年日本工業大学
福田のおもしろ数学114〜円の接線の公式の証明
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
指数方程式
福田の数学〜東北大学2024年理系第1問〜放物線と接線と面積
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
この動画を見る
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
福田のおもしろ数学111〜論証力をチェックしよう〜3変数の基本対称式の性質
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師:
福田次郎
問題文全文(内容文):
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
この動画を見る
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
「安定の良問」 by にっし~Diaryさん #極限
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
この動画を見る
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
福田のおもしろ数学108〜虚数単位iは数直線上に存在するか
二次方程式の応用
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
この動画を見る
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
#61数検1級1次「よくできた問題」
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ
出典:数検1級1次
この動画を見る
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ
出典:数検1級1次
2024次方程式の解と係数の関係
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする
$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ
出典:OnLineMath Contest
この動画を見る
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする
$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ
出典:OnLineMath Contest
#会津大学(2009) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$
出典:2009年会津大学
この動画を見る
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$
出典:2009年会津大学
#59数検1級1次「国立大の入試問題の代表的な題材」
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。
出典:数検1級1次
この動画を見る
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。
出典:数検1級1次
福田の数学〜慶應義塾大学2024年看護医療学部第2問(2)〜2次方程式の解の存在範囲
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
この動画を見る
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ
出典:2011年青山県立大学中期 入試問題
この動画を見る
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ
出典:2011年青山県立大学中期 入試問題
大学入試問題#782「もう何回目だろうか」 横浜市立大学(2004) #区分求積法
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$
出典:2004年横浜市立大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$
出典:2004年横浜市立大学 入試問題
福田の数学〜慶應義塾大学2024年看護医療学部第1問(4)〜円と接線の長さ
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)円$x^2$+$y^2$-$4x$+$10y$+11=0 を$C$とするとき、円$C$の中心は$\boxed{\ \ オ\ \ }$であり、半径は$\boxed{\ \ カ\ \ }$である。また、この円$C$には点P(3,2)から2本の接線を引くことができるが、その接点の1つをAとする。このとき、線分APの長さはAP=$\boxed{\ \ キ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (4)円$x^2$+$y^2$-$4x$+$10y$+11=0 を$C$とするとき、円$C$の中心は$\boxed{\ \ オ\ \ }$であり、半径は$\boxed{\ \ カ\ \ }$である。また、この円$C$には点P(3,2)から2本の接線を引くことができるが、その接点の1つをAとする。このとき、線分APの長さはAP=$\boxed{\ \ キ\ \ }$である。
#宮崎大学(2017) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} x\sqrt{ 2-x }\ dx$
出典:2017年宮崎大学
この動画を見る
$\displaystyle \int_{0}^{2} x\sqrt{ 2-x }\ dx$
出典:2017年宮崎大学
大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$
出典:2005年久留米大学医学部 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$
出典:2005年久留米大学医学部 入試問題
福田の数学〜慶應義塾大学2024年看護医療学部第1問(3)〜対数不等式
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)不等式$(\log_4x)^2$-$\log_8x^2$+$\frac{1}{3}$<0 を解くと$\boxed{\ \ エ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (3)不等式$(\log_4x)^2$-$\log_8x^2$+$\frac{1}{3}$<0 を解くと$\boxed{\ \ エ\ \ }$である。
大学入試問題#780「この当て方は、凄すぎ!横浜市立の先生は視聴者かな!?w」 横浜市立大学(2024) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{(x\ \sin\ x+\cos\ x)^2} dx$
出典:2024年横浜市立大学
この動画を見る
$\displaystyle \int \displaystyle \frac{x^2}{(x\ \sin\ x+\cos\ x)^2} dx$
出典:2024年横浜市立大学
福田の数学〜慶應義塾大学2024年看護医療学部第1問(2)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)0≦$x$<$\pi$のとき、方程式$\cos 3x$+$\cos x$=0 の解は$x$=$\boxed{\ \ イ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (2)0≦$x$<$\pi$のとき、方程式$\cos 3x$+$\cos x$=0 の解は$x$=$\boxed{\ \ イ\ \ }$である。
【使えるものは使おう…!】解と係数の関係の逆:二次方程式(その4)~中学からの二次方程式
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 3x^2-2x+4=3$の2つの解を$ \alpha,\beta$とするとき,
$ \alpha+3,\beta+3 $を解とする2次方程式をつくれ.
この動画を見る
$ 3x^2-2x+4=3$の2つの解を$ \alpha,\beta$とするとき,
$ \alpha+3,\beta+3 $を解とする2次方程式をつくれ.
#広島市立大学(2011) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^2+1)^2}$
出典:2011年広島市立大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^2+1)^2}$
出典:2011年広島市立大学