数Ⅱ
数Ⅱ
【高校数学】微分2.5~例題・微分の活用・応用~ 6-5【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)次の条件をすべて満たす2次関数f(x)を求めよ。
f(0)=2、f'(0)=-3、f'(1)=1
(2)半径rの球の表面積Sと体積Vをそれぞれrの関数と考え、
SとVをrで微分せよ。
この動画を見る
(1)次の条件をすべて満たす2次関数f(x)を求めよ。
f(0)=2、f'(0)=-3、f'(1)=1
(2)半径rの球の表面積Sと体積Vをそれぞれrの関数と考え、
SとVをrで微分せよ。
神戸大 三次方程式の解 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$
出典:神戸大学 過去問
この動画を見る
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$
出典:神戸大学 過去問
慶應商 式の証明 高校数学 Mathematics Japanese university entrance exam Keio University

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ
出典:慶應商学部 問題
この動画を見る
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ
出典:慶應商学部 問題
【高校数学】微分2.5~例題・微分の仕方・基礎~ 6-4【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)関数y=x³+x²の導関数を求めよ。
(2)関数y=(2x-1)(3x+5)を微分せよ。
(☆) f(x)=x²のx=2における微分係数を求めよ。
この動画を見る
(1)関数y=x³+x²の導関数を求めよ。
(2)関数y=(2x-1)(3x+5)を微分せよ。
(☆) f(x)=x²のx=2における微分係数を求めよ。
【高校数学】微分②~導関数~ 6-3【数学Ⅱ】

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
この動画を見る
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
【高校数学】微分1.5~例題・微分係数と極限~ 6-2【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
この動画を見る
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
東京理科大 3次方程式 解と係数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
この動画を見る
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
佐賀大 三次関数 最大値・最小値 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
この動画を見る
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
【高校数学】微分①~平均変化率と微分係数~ 6-1【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
微分 平均変化率と微分係数についての説明動画です
この動画を見る
微分 平均変化率と微分係数についての説明動画です
筑波大 3倍角の公式と3次方程式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#三角関数#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 筑波大学過去問
(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ
(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ
(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
この動画を見る
09年 筑波大学過去問
(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ
(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ
(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
この動画を見る
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
東北大 指数不等式 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 東北大学過去問
全ての実数$x$に対して$2^{2x+2}+2^x+1-a\gt0$が成り立つような実数$a$の範囲を求めよ
この動画を見る
96年 東北大学過去問
全ての実数$x$に対して$2^{2x+2}+2^x+1-a\gt0$が成り立つような実数$a$の範囲を求めよ
【高校数学】対数関数1.5~例題・応用~【数学Ⅱ】

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
この動画を見る
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ
この動画を見る
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ
京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

単元:
#大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
この動画を見る
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
香川大 4次関数と接線 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
1994年 国立大学法人香川大学
$f(x)=x^4-2x^2$
$(a,f(a))$における接線と$f(x)$との共有点の個数
この動画を見る
1994年 国立大学法人香川大学
$f(x)=x^4-2x^2$
$(a,f(a))$における接線と$f(x)$との共有点の個数
京都大 4次方程式 虚数解 Mathematics Japanese university entrance exam Kyoto University

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
この動画を見る
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
京都大 式の値域 Mathematics Japanese university entrance exam Kyoto University

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2012年 学校法人京都大学
実数$x,y$が$x^2+xy+y^2=6$を満たす
$x^2y+xy^2-x^2-2xy-y^2+x+y$のとりうる値の範囲
この動画を見る
2012年 学校法人京都大学
実数$x,y$が$x^2+xy+y^2=6$を満たす
$x^2y+xy^2-x^2-2xy-y^2+x+y$のとりうる値の範囲
東海大 4次方程式 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東海大学
$x^4-2x^3+bx^2-2x+1=0$
$(1)$実数解をもつ$b$の値の範囲
$(2)$ちょうど$3$個の実数解をもつ$b$の値と実数解
この動画を見る
東海大学
$x^4-2x^3+bx^2-2x+1=0$
$(1)$実数解をもつ$b$の値の範囲
$(2)$ちょうど$3$個の実数解をもつ$b$の値と実数解
数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人東京大学
$y=x^2$上に$P,Q$がある
線分$PQ$の中点の$y$座標を$h$
$(1)PQ$の長さ$L$と傾き$m$で$h$を表せ
$(2)L$を固定したときの$h$の最小値
この動画を見る
国立大学法人東京大学
$y=x^2$上に$P,Q$がある
線分$PQ$の中点の$y$座標を$h$
$(1)PQ$の長さ$L$と傾き$m$で$h$を表せ
$(2)L$を固定したときの$h$の最小値
京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学
$f(x)=x^3-3ax$
$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る
1993年 国立大学法人京都大学
$f(x)=x^3-3ax$
$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学
自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る
国立大学法人大阪大学
自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
新潟大 微分・積分 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人新潟大学
$C:$$f(x)=2x^3-12x$
$(1,-2)$を通る接線$C$の接線を$l$
$(1)l$の方程式
$(2)C$と$l$で囲まれる面積
この動画を見る
国立大学法人新潟大学
$C:$$f(x)=2x^3-12x$
$(1,-2)$を通る接線$C$の接線を$l$
$(1)l$の方程式
$(2)C$と$l$で囲まれる面積
新潟大 微分・積分 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
$C:f(x)=2x^3-12x$
(1,-2)を通るCの接線をl
(1)lの方程式
(2)Cとlで囲まれる面積
この動画を見る
新潟大学過去問題
$C:f(x)=2x^3-12x$
(1,-2)を通るCの接線をl
(1)lの方程式
(2)Cとlで囲まれる面積
【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
この動画を見る
2018年度センター試験・数学ⅡB・過去問解説動画です
【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
sin x-$\sqrt{3}$cos x=1
(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
y=sin x+cos x(0≦x≦2π)
この動画を見る
(1) 0≦x<2πのとき、次の方程式を解け。
sin x-$\sqrt{3}$cos x=1
(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
y=sin x+cos x(0≦x≦2π)
筑波大 4次関数 接点と交点 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'93筑波大学過去問題
$f(x)=x^4-2x^2$
f(x)の接線がf(x)と接点以外に異なる2点で交わる条件。
又、接点、2交点の3点が等間隔になるときの接点のx座標
この動画を見る
'93筑波大学過去問題
$f(x)=x^4-2x^2$
f(x)の接線がf(x)と接点以外に異なる2点で交わる条件。
又、接点、2交点の3点が等間隔になるときの接点のx座標
