数列
【高校数学】等差数列の性質~等差数列の証明と等差中項~ 3-3【数学B】
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,6,2aが等差数列のとき、aの値を求めよ
この動画を見る
a,6,2aが等差数列のとき、aの値を求めよ
【数B】数列:種々の数列格子点
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上の曲線$y=-nx^2+2n^2x$とx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)$A_1、A_2$の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値が$x=k(k=0,1,2,・・・,2n)$である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
この動画を見る
座標平面上の曲線$y=-nx^2+2n^2x$とx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)$A_1、A_2$の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値が$x=k(k=0,1,2,・・・,2n)$である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
【高校数学】等差数列の一般項の例題2第~一緒に解こう~ 3-2.5【数学B】
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
次の等差数列の一般項を求めよ。
また、その第8項を求めよ。
23,17,11,5,…
2⃣
第5項が-5,第10項が15である等差数列{an}がある。
この数列の一般項を求めよ。
この動画を見る
1⃣
次の等差数列の一般項を求めよ。
また、その第8項を求めよ。
23,17,11,5,…
2⃣
第5項が-5,第10項が15である等差数列{an}がある。
この数列の一般項を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} kを実数の定数とする。実数xは不等式\\
(*) 2\log_5x-\log_5(6x-5^k) \lt k-1\\
を満たすとする。\\
\\
(1)不等式(*)を満たすxの値の範囲を、kを用いて表せ。\\
\\
(2)kを自然数とする。(*)を満たすxのうち奇数の個数をa_kとし\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。a_kをkの式で表し、さらにS_nをnの式で表せ。\\
\\
(3)(2)のS_nに対して、S_n+nが10桁の整数となるような自然数n\\
の値を求めよ。なお、必要があれば0.30 \lt \log_{10}2 \lt 0.31を用いよ。
\end{eqnarray}
2021慶應義塾大学経済学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} kを実数の定数とする。実数xは不等式\\
(*) 2\log_5x-\log_5(6x-5^k) \lt k-1\\
を満たすとする。\\
\\
(1)不等式(*)を満たすxの値の範囲を、kを用いて表せ。\\
\\
(2)kを自然数とする。(*)を満たすxのうち奇数の個数をa_kとし\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。a_kをkの式で表し、さらにS_nをnの式で表せ。\\
\\
(3)(2)のS_nに対して、S_n+nが10桁の整数となるような自然数n\\
の値を求めよ。なお、必要があれば0.30 \lt \log_{10}2 \lt 0.31を用いよ。
\end{eqnarray}
2021慶應義塾大学経済学過去問
福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
【高校数学】等差数列の一般項~理解すると忘れない~ 3-2【数学B】
福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
階乗(❗️)に関する問題 常総学院
単元:
#数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(n+2)!}{n!} = 20$のときn=?
常総学院高等学校(改)
この動画を見る
$\frac{(n+2)!}{n!} = 20$のときn=?
常総学院高等学校(改)
数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京農工大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
この動画を見る
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
田の数学〜早稲田大学2021年人間科学部第3問〜格子点の個数
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 自然数nについて、連立不等式\\
\\
\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.\\
\\
を満たす整数の組(x,\ y)の個数は、n=1のときは\\
\boxed{\ \ シ\ \ }であり、nの式で表すと\\
\\
\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }\\
\\
となる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 自然数nについて、連立不等式\\
\\
\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.\\
\\
を満たす整数の組(x,\ y)の個数は、n=1のときは\\
\boxed{\ \ シ\ \ }であり、nの式で表すと\\
\\
\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }\\
\\
となる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る
1,4,9,16,25…この一般項を求めよ。
数学「大学入試良問集」【13−15 格子点の解法】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。
(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
この動画を見る
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。
(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
数学「大学入試良問集」【13−14 確率漸化式の基本】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
この動画を見る
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。
(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
(ⅰ)$a_n$を求めよ。
(ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
この動画を見る
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。
(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
(ⅰ)$a_n$を求めよ。
(ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
数学「大学入試良問集」【13−9 数学的帰納法(累積帰納法)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
この動画を見る
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの\\異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、\\
底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、\\
この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さ\\
が1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。\\
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は\\
20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して\\
次の問いに答えよ。\\
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた\\
正三角形の総数を求めよ。\\
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形\\
の総数を求めよ。\\
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形\\
の総数を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの\\異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、\\
底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、\\
この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さ\\
が1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。\\
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は\\
20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して\\
次の問いに答えよ。\\
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた\\
正三角形の総数を求めよ。\\
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形\\
の総数を求めよ。\\
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形\\
の総数を求めよ。
\end{eqnarray}
🟨=❓ 解けたら天才⁉️
数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$
次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。
(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$
次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。
(2)
$x_n$および$y_n$を$n$の式で表せ。
【25分で総復習】最初から『数列①』等差数列、等比数列(数学B)
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。
2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
この動画を見る
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。
2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
数学「大学入試良問集」【13−5② 漸化式(デザイン型】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
この動画を見る
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。
(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
この動画を見る
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。
(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。
(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。
(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
年齢1の各個体から年齢0の$k$個の個体を発生される。
ただし、$k \gt 1$とする。
操作2.
全個体の年齢をそれぞれ1増やす。
次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。
(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
この動画を見る
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
年齢1の各個体から年齢0の$k$個の個体を発生される。
ただし、$k \gt 1$とする。
操作2.
全個体の年齢をそれぞれ1増やす。
次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。
(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。
(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
この動画を見る
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。
(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
数学「大学入試良問集」【13−1 Snとanの取り扱い】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#明星大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。
$S_n=-2a_n+3n$が成り立つとき、次の問いに答えよ。
(1)$a_1$と$a_2$を求めよ。
(2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$a_n$を$n$を用いて表せ。
この動画を見る
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。
$S_n=-2a_n+3n$が成り立つとき、次の問いに答えよ。
(1)$a_1$と$a_2$を求めよ。
(2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$a_n$を$n$を用いて表せ。