数列
【数B】数列:対数型の漸化式! a1=1,a[n+1]=√2a[n]で定められる数列{an}の一般項を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a1=1,a_{n+1}=\sqrt2{a_n}$で定められる数列${an}$の一般項を求めよ。
この動画を見る
$a1=1,a_{n+1}=\sqrt2{a_n}$で定められる数列${an}$の一般項を求めよ。
宮崎大 数学的帰納法 合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.
(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.
宮崎大過去問
この動画を見る
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.
(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.
宮崎大過去問
東工大 三項間漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.
2013東工大過去問
この動画を見る
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.
2013東工大過去問
佐賀大 漸化式
【数B】数列:数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。95東工大,07筑波大,青山学院などで出題された問題です!
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
この動画を見る
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
【数B】数列:初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
この動画を見る
初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
三項間漸化式 兵庫県立大
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
この動画を見る
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
日本医科大学 三次方程式の解が等比数列
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
この動画を見る
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
【数B】数列:第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。
この動画を見る
第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。
【数B】数列: 次の条件を満たす等差数列anの一般項を求めよ。a1+a4=12,a1+a7=18
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
この動画を見る
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
【数B】数列:1,6,15,28,45,…の一般項を求めよ。階差数列の解法紹介!!
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
教材:
#高校ゼミスタンダード#高校ゼミスタンダード数B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列:1,6,15,28,45,…の一般項を求めよ。
この動画を見る
数列:1,6,15,28,45,…の一般項を求めよ。
【数B】数列:京大数学を5分以内に解説! 先頭から順に1~nの番号がついたn両編成の列車がある。 各車両を赤青黄のいずれか1色で塗るとき、隣合った車両の少なくとも一方が赤となる色の塗り方は?
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
この動画を見る
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
20年5月数学検定準1級1次試験(数列)
単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
この動画を見る
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
三項間漸化式(応用)高知大
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.
高知大過去問
この動画を見る
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.
高知大過去問
漸化式 香川大(医)
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.
(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.
2018香川(医)過去問
この動画を見る
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.
(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.
2018香川(医)過去問
漸化式 群馬大(医)
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$
1979群馬大(医)過去問
この動画を見る
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$
1979群馬大(医)過去問
数列 千葉大
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$
1979千葉大過去問
この動画を見る
これを解け.
$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$
1979千葉大過去問
数列 大阪大
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.
1979大阪大過去問
この動画を見る
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.
1979大阪大過去問
確率 漸化式
【高校数学】部分分数分解の分母に二乗があるパターン
単元:
#恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師:
受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る
部分分数分解の分母に二乗がある場合の解説動画です
合同式 数学的帰納法 東工大
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.
東工大過去問
この動画を見る
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.
東工大過去問
金沢大 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=-4,a_{n+1}=2a_n+2^{n+3}n-13・2^{n+1}$である.
一般項を求め,$a_n$を最小にする$n$の値を求めよ.
2003金沢大過去問
この動画を見る
$a_1=-4,a_{n+1}=2a_n+2^{n+3}n-13・2^{n+1}$である.
一般項を求め,$a_n$を最小にする$n$の値を求めよ.
2003金沢大過去問
横浜市立(医)漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.
横浜市立(医)過去問
この動画を見る
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.
横浜市立(医)過去問
特性方程式て何だよ!漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.
北海学園大過去問
この動画を見る
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.
北海学園大過去問
関西学院大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$
一般項を求めよ
{$a_n$}の最大値とそれを与える$n$を求めよ
出典:2005年関西学院大学 過去問
この動画を見る
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$
一般項を求めよ
{$a_n$}の最大値とそれを与える$n$を求めよ
出典:2005年関西学院大学 過去問
福島県立医大 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
一般項$a_n$を求めよ
$a_1=2$
$S_nS_{n+1}=9^n$
出典:2006年福島県立医科大学 過去問
この動画を見る
一般項$a_n$を求めよ
$a_1=2$
$S_nS_{n+1}=9^n$
出典:2006年福島県立医科大学 過去問
一橋大 確率漸化式
単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
動画内の図のように同時に玉を1個入れ替える
$n$回目に$A$に赤1個、白3個となっている確率$P_n$を求めよ
出典:一橋大学 過去問
この動画を見る
動画内の図のように同時に玉を1個入れ替える
$n$回目に$A$に赤1個、白3個となっている確率$P_n$を求めよ
出典:一橋大学 過去問
東京薬科大 数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ
出典:東京薬科大学 過去問
この動画を見る
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ
出典:東京薬科大学 過去問
順天堂大(医)等比数列の和の収束
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束
{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ
出典:順天堂大学医学部 過去問
この動画を見る
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束
{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ
出典:順天堂大学医学部 過去問
2020年 大阪大 確率漸化式
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない
$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ
(2)
$P_{n+1}$を$P_n$で表せ
(3)
$P_n$を求めよ
出典:2020年大阪大学 過去問
この動画を見る
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない
$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ
(2)
$P_{n+1}$を$P_n$で表せ
(3)
$P_n$を求めよ
出典:2020年大阪大学 過去問