数Ⅲ

【数Ⅲ】【微分とその応用】微分計算の基本2 ※問題文は概要欄

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
この動画を見る
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
【数Ⅲ】【微分とその応用】不等式の応用6 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
この動画を見る
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。
$0≦x≦1$のとき
$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る
次のことが成り立つことを証明せよ。
$0≦x≦1$のとき
$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、
不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
この動画を見る
すべての正の数xに対して、
不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
【数Ⅲ】【微分とその応用】不等式の応用2 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。
(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$
(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$
この動画を見る
次のことが成り立つことを証明せよ。
(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$
(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$
【数Ⅲ】【微分とその応用】不等式の応用1 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
この動画を見る
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

単元:
#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$p$を$2$以上の自然数の定数とする。$n$=$2$, $3$, $4$...に対して、関数 $f_n(x) $$(n\gt0)$を
$f_n(x) = (1 + \dfrac{x}{n})(1 + \dfrac{x}{n+1}) \cdot\cdot \cdot(1 + \dfrac{x}{pn})
$
で定める。例えば$p$ = $2$のとき
$
f_2(x) = (1 + \dfrac{x}{2})(1 + \dfrac{x}{3})(1 + \dfrac{x}{4})
$
$
f_3(x) = (1 + \dfrac{x}{3})(1 + \dfrac{x}{4})(1 + \dfrac{x}{5})(1 + \dfrac{x}{6})
$
である。$f(x)=\displaystyle \lim_{ n \to \infty }f_n(x)$ $(n\gt0)$とおくとき、次の問に答えよ。
$(1)$$t$$\geqq$$0$のとき、不等式$\dfrac{t}{1+t}$$\leqq$$\log(1+t)$$\leqq$$t$ が成り立つことを示せ。ただし、対数は自然対数とする。
$(2)$ $f(x)$を求めよ。
この動画を見る
$p$を$2$以上の自然数の定数とする。$n$=$2$, $3$, $4$...に対して、関数 $f_n(x) $$(n\gt0)$を
$f_n(x) = (1 + \dfrac{x}{n})(1 + \dfrac{x}{n+1}) \cdot\cdot \cdot(1 + \dfrac{x}{pn})
$
で定める。例えば$p$ = $2$のとき
$
f_2(x) = (1 + \dfrac{x}{2})(1 + \dfrac{x}{3})(1 + \dfrac{x}{4})
$
$
f_3(x) = (1 + \dfrac{x}{3})(1 + \dfrac{x}{4})(1 + \dfrac{x}{5})(1 + \dfrac{x}{6})
$
である。$f(x)=\displaystyle \lim_{ n \to \infty }f_n(x)$ $(n\gt0)$とおくとき、次の問に答えよ。
$(1)$$t$$\geqq$$0$のとき、不等式$\dfrac{t}{1+t}$$\leqq$$\log(1+t)$$\leqq$$t$ が成り立つことを示せ。ただし、対数は自然対数とする。
$(2)$ $f(x)$を求めよ。
【数Ⅲ】【積分とその応用】体積の2等分 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
この動画を見る
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
【数Ⅲ】【積分とその応用】回転体の体積が最大になるとき ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
この動画を見る
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
【数Ⅲ】【積分とその応用】媒介変数表示の回転体の体積 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線x=tanθ、y=cos2θ(-π/4≦θ≦π/4)とx軸で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
この動画を見る
曲線x=tanθ、y=cos2θ(-π/4≦θ≦π/4)とx軸で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】回転軸をまたぐ回転体の体積 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
この動画を見る
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
【数Ⅲ】【積分とその応用】y=1周りの回転体の体積 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $
この動画を見る
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積3 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
y=log x、原点を通るこの曲線の接線、およびx軸で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ
この動画を見る
y=log x、原点を通るこの曲線の接線、およびx軸で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
この動画を見る
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積1 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
この動画を見る
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
【数Ⅲ】【積分とその応用】x軸周りの回転体の体積 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
この動画を見る
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
この動画を見る
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
この動画を見る
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
難易度バリ高の極限 by 餃子n人前さん ※作成者の解答を参考に動画を作成しています。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
この動画を見る
$a_1=1,$ $a_{n+1}+a_n=\displaystyle \frac{1}{n}$のとき、
$\displaystyle \lim_{ n \to \infty } |na_n|$を求めよ
#岩手大学2024#定積分_34

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$
出典:2024年岩手大学
この動画を見る
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$
出典:2024年岩手大学
#福島大学2023#定積分_33

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$
出典:2023年福島大学
この動画を見る
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$
出典:2023年福島大学
#南山大学2021#定積分_32

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$
出典:2021年南山大学
この動画を見る
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$
出典:2021年南山大学
#福島大学2024#定積分_31#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$
出典:2024年福島大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$
出典:2024年福島大学
大学入試問題#922「できればスッと解きたい」

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{3}^{4} \displaystyle \frac{4x^2-9x+6}{(x-1)(x-2)^2} dx$
出典:2023年福島大学
この動画を見る
$\displaystyle \int_{3}^{4} \displaystyle \frac{4x^2-9x+6}{(x-1)(x-2)^2} dx$
出典:2023年福島大学
#青山学院大学2023#定積分_30#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos3x\cos\displaystyle \frac{x}{3} dx$
出典:2023年 青山学院大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos3x\cos\displaystyle \frac{x}{3} dx$
出典:2023年 青山学院大学
#広島市立大学2024#不定積分_29#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^{2x}-4} dx$
出典:2024年広島市立大学
この動画を見る
$\displaystyle \int \displaystyle \frac{e^x}{e^{2x}-4} dx$
出典:2024年広島市立大学
大学入試問題#921「癖がない綺麗な神問題」

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$
1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。
出典:1997年千葉大学
この動画を見る
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$
1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。
出典:1997年千葉大学
#京都大学1965#微分_28#元高校教員

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
この動画を見る
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
#高知工科大学2024#定積分_27#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$
出典:2024年高知工科大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$
出典:2024年高知工科大学
#高専#不定積分_19#元高専教員

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$
出典:国立高等専門学校機構
この動画を見る
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$
出典:国立高等専門学校機構