関数と極限

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。
2022神戸大学理系過去問
この動画を見る
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。
2022神戸大学理系過去問
福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。
2022大阪大学理系過去問
この動画を見る
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。
2022大阪大学理系過去問
これの説明できますか?

大学入試問題#169 愛知教育大学(2013) 区分求積法

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知教育大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。
出典:2013年愛知教育大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。
出典:2013年愛知教育大学 入試問題
福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
関数f(x)は区間$x \geqq 0$において連続な増加関数で$f(0)=1$を満たすとする。
ただしf(x)が区間$x \geqq 0$における増加関数であるとは、区間内の任意の実数$x_1,x_2$に対し
$x_1 \lt x_2$ならば$f(x_1) \lt f(x_2)$が成り立つ時をいう。以下、nは正の整数とする。
(1)$\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty$ を示せ。
(2)区間$y \gt 2$ において関数$F_n(y)$を$F_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dx$と定めるとき、
$\lim_{y \to \infty}F_n(y)=\infty$を示せ。また$2+\frac{1}{n}$より大きい実数$a_n$で
$\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0$
を満たすものがただ1つ存在することを示せ。
(3)(2)の$a_n$について、不等式$a_n \lt 4$がすべてのnに対して成り立つことを示せ。
2022名古屋大学理系過去問
この動画を見る
関数f(x)は区間$x \geqq 0$において連続な増加関数で$f(0)=1$を満たすとする。
ただしf(x)が区間$x \geqq 0$における増加関数であるとは、区間内の任意の実数$x_1,x_2$に対し
$x_1 \lt x_2$ならば$f(x_1) \lt f(x_2)$が成り立つ時をいう。以下、nは正の整数とする。
(1)$\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty$ を示せ。
(2)区間$y \gt 2$ において関数$F_n(y)$を$F_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dx$と定めるとき、
$\lim_{y \to \infty}F_n(y)=\infty$を示せ。また$2+\frac{1}{n}$より大きい実数$a_n$で
$\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0$
を満たすものがただ1つ存在することを示せ。
(3)(2)の$a_n$について、不等式$a_n \lt 4$がすべてのnに対して成り立つことを示せ。
2022名古屋大学理系過去問
円は何角形ですか?

単元:
#関数と極限#数列の極限#平面図形その他#数学(高校生)#数Ⅲ
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
円は何角形でしょう?何角形から円となるでしょう?
この動画を見る
円は何角形でしょう?何角形から円となるでしょう?
大学入試問題#155 琉球大学(1987) 極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。
出典:1987年琉球大学 入試問題
この動画を見る
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。
出典:1987年琉球大学 入試問題
大学入試問題#152 東京工業大学(2002) 極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{log\ n}(1+\displaystyle \frac{1}{2}+・・・+\displaystyle \frac{1}{n})$を求めよ。
出典:2002年東京工業大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{log\ n}(1+\displaystyle \frac{1}{2}+・・・+\displaystyle \frac{1}{n})$を求めよ。
出典:2002年東京工業大学 入試問題
福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
座標空間内において、ベクトル
$\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)$
が定める直線
$l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }$
を考える。点$A_1$を原点(0,0,0)とし、点$A_1$から直線l'に下ろした垂線$A_1B_1$と
おく。次に、点$B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })$から直線lに下ろした垂線を$B_1A_2$とおく。
同様に、点$A_k(s_k\overrightarrow{ a })$から直線l'に下ろした垂線を$A_kB_k$、点$B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })$から直線l
に下ろした垂線を$B_kA_{k+1}$とする手順を繰り返して、点$A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })$
(nは正の整数)を定める。
(1)$s_n$を用いて$s_{n+1}$を表せ。
(2)極限値$S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_n$を求めよ。
(3)(2)で求めたS,Tに対して、点A,Bをそれぞれ$A(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })$とおくと、
直線ABは2直線l,l'の両方と直交することを示せ。
2022東北大学理系過去問
この動画を見る
座標空間内において、ベクトル
$\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)$
が定める直線
$l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }$
を考える。点$A_1$を原点(0,0,0)とし、点$A_1$から直線l'に下ろした垂線$A_1B_1$と
おく。次に、点$B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })$から直線lに下ろした垂線を$B_1A_2$とおく。
同様に、点$A_k(s_k\overrightarrow{ a })$から直線l'に下ろした垂線を$A_kB_k$、点$B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })$から直線l
に下ろした垂線を$B_kA_{k+1}$とする手順を繰り返して、点$A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })$
(nは正の整数)を定める。
(1)$s_n$を用いて$s_{n+1}$を表せ。
(2)極限値$S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_n$を求めよ。
(3)(2)で求めたS,Tに対して、点A,Bをそれぞれ$A(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })$とおくと、
直線ABは2直線l,l'の両方と直交することを示せ。
2022東北大学理系過去問
大学入試問題#148 京都大学(1972) 積分と極限

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。
出典:1972年京都大学 入試問題
この動画を見る
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。
出典:1972年京都大学 入試問題
福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
正の整数nに対して、
$S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)$
とする。
(1)正の実数xに対して、次の不等式が成り立つことを示せ。
$\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}$
(2)極限値$\lim_{n \to \infty}S_n$を求めよ。
2022東北大学理系過去問
この動画を見る
正の整数nに対して、
$S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)$
とする。
(1)正の実数xに対して、次の不等式が成り立つことを示せ。
$\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}$
(2)極限値$\lim_{n \to \infty}S_n$を求めよ。
2022東北大学理系過去問
いくつでしょうか?

単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
この動画を見る
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
大学入試問題#122 愛知県立大学(2020) 極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{1}{x^x}(x-a)^x$を求めよ。
出典:2020年愛知県立大学 入試問題
この動画を見る
$a \gt 0$
$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{1}{x^x}(x-a)^x$を求めよ。
出典:2020年愛知県立大学 入試問題
大学入試問題#118 防衛医科大学(2012) 区分求積法

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ \displaystyle \frac{(4n)!}{(3n)!} }$を求めよ。
出典:2012年防衛医科大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ \displaystyle \frac{(4n)!}{(3n)!} }$を求めよ。
出典:2012年防衛医科大学 入試問題
極限ってこういうこと?

根号を含む方程式

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-5=\sqrt{x+5}$
実数解を求めよ
この動画を見る
$x^2-5=\sqrt{x+5}$
実数解を求めよ
大学入試問題#109 大阪府立大学(2010) 無限級数

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{n}{n+5}\ a_n$のとき
$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ
出典:2010年大阪府立大学 入試問題
この動画を見る
$a_1=1$
$a_{n+1}=\displaystyle \frac{n}{n+5}\ a_n$のとき
$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ
出典:2010年大阪府立大学 入試問題
大学入試問題#102 高知女子大学(1988) 無限級数

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。
出典:1988年高知女子大学 入試問題
この動画を見る
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。
出典:1988年高知女子大学 入試問題
大学入試問題#98 千葉大学医学部(2018) 積分・極限

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。
出典:2018年千葉大学 入試問題
この動画を見る
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。
出典:2018年千葉大学 入試問題
大学入試問題#86 防衛医科大学(1988) 極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師:
ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。
出典:1988年防衛医科大学 入試問題
この動画を見る
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。
出典:1988年防衛医科大学 入試問題
大学入試問題#77 京都大学(2002) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。
出典:2002年京都大学 入試問題
この動画を見る
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。
出典:2002年京都大学 入試問題
【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
この動画を見る
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
大学入試問題#74 神戸大学(1991) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
この動画を見る
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
大学入試問題#73 京都大学(2012) 極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(1+a^n)^{\frac{1}{n}}$の極限を求めよ。
出典:2012年京都大学 入試問題
この動画を見る
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(1+a^n)^{\frac{1}{n}}$の極限を求めよ。
出典:2012年京都大学 入試問題
こう見えても高校内容です。

原始ピタゴラス数を探せ

【数Ⅲ】極限:極限の定形不定形をマスターしよう!

単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
この動画を見る
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
数3を使わずに分数関数の最小値を求める

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
この動画を見る
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

大学入試問題#40 東京理科大学(2021) 数列と極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=27$
$a_{n+1}=3\sqrt{ a_n }$を満たす数列$\{a_n\}$において
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:2021年東京理科大学 入試問題
この動画を見る
$a_1=27$
$a_{n+1}=3\sqrt{ a_n }$を満たす数列$\{a_n\}$において
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:2021年東京理科大学 入試問題