ベクトルと平面図形、ベクトル方程式 - 質問解決D.B.(データベース) - Page 6

ベクトルと平面図形、ベクトル方程式

【高校数学】数Ⅲ-46 極座標と極方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする極座標において、
2点$A\left(2,\dfrac{\pi}{6}\right),B\left(4,\dfrac{5}{6}\pi\right)$がある。

①線分$AB$の長さを求めよ。

②$\triangle OAB$の面積を求めよ。
この動画を見る 

【高校数学】数Ⅲ-45 極座標と極方程式②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極座標の点$A,B$の直交座標を求めよ。

①$A\left(3,\dfrac{\pi}{6}\right)$

②$B\left(2,-\dfrac{5}{6}\pi\right)$

次の直交座標の点$C,D$の極座標$(r,\theta)$を求めよ。
ただし、$0\leqq \theta \leqq 2\pi$とする。

③$C(0,-2)$

④$D(\sqrt3,-3)$
この動画を見る 

【高校数学】数Ⅲ-44 極座標と極方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。

極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。

平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。

中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨

図は動画内参照
この動画を見る 

【高校数学】 数B-55 空間における平面・直線の方程式③

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①直線$\ell:x=-1+t,y=3+t,z=1+2t$上に点$P$がある.
線分$OP$が最小となる点$P$の座標を求めよう.

②2点$A(3,1,4),B(1,2,-1)$を通る直線上に点のうちで,
原点に最も近い点の座標を求めよう.
この動画を見る 

【高校数学】 数B-54 空間における平面・直線の方程式②

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次のような直線の方程式を媒介変数$t$を用いて表そう.

①点$(3,2,1)$を通り,$\overrightarrow{a}=(0,2,1)$に平行な直線

②2点$(5,8,-7),(6,-9,3)$を通る直線

③点$(2,-1,3)$を通り,ベクトル$(5,2,-2)$に平行な直線と,
平面$3x-2y=-4$との交点の座標を求めよう.
この動画を見る 

【高校数学】 数B-53 空間における平面・直線の方程式①

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる円の半径が
$3\sqrt3$であるとき,$a$の値を求めよう.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

【高校数学】 数B-52 座標空間における図形③

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる
円の半径が$3\sqrt3$であるとき,$a$の値を求めよ.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

【高校数学】 数B-51 座標空間における図形②

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問題1
点$A(5,-4,7)$を通る,次のような平面の方程式を求めよう.

①$x$軸に垂直

②$z$軸に垂直

③$xy$平面に平行

問題2
次の球面の方程式を求めよう.

④中心が$(3,-1,2)$,半径が5の球面

⑤中心が$(1,3,-1)$で,点$(5,-1,1)$を通る球面
この動画を見る 

【高校数学】 数B-50 座標空間における図形①

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点$A(8,-7,5),B(-2,3,-5),C(3,-2,-3)$に体して,
次の各点の座標を求めよう.

①線分$AB$を$3:2$に内分する点

②線分$AC$を$2:3$に外分する点

③線分$AB$の中点

④$\triangle ABC$の重心
この動画を見る 

【高校数学】 数B-49 位置ベクトルと図形⑤

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
四面体$OABC$と点$P$について,
$7\overrightarrow{OP}+2\overrightarrow{AP}+4\overrightarrow{BP}+5\overrightarrow{CP}=\overrightarrow{O}$が成り立つ.

①点$P$はどのような位置にあるか答えよう.

②四面体$OABC,PABC$の体積をそれぞれ$V_1,V_2$とするとき,
$V_1:V_2$を求めよう.
この動画を見る 

【高校数学】 数B-48 位置ベクトルと図形④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$において,辺$AB$を$1:2$に内分する点を$P$,
線分$PC$を$2;3$に内分する点を$Q$とする.
また,辺$OA$の中点を$D$,辺$OB$を$2:1$に内分する点を$E$,
辺$OC$を$1:2$に内分する点を$F$とする.
平面$DEF$と線分$OQ$の交点を$R$とするとき,$OR:OQ$を求めよう.
この動画を見る 

【高校数学】 数B-47 位置ベクトルと図形③

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
この動画を見る 

【高校数学】 数B-46 位置ベクトルと図形②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
この動画を見る 

【高校数学】 数B-45 位置ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$A(\overrightarrow{a}),B(\overrightarrow{b}),C(\overrightarrow{c}),D(\overrightarrow{d})$を頂点とする四面体の辺$BC$を$3:1$に内分する点を
$P,DP$を$4:3$に外分する点を$Q$,線分$AQ$の中点を$R$とする.
点$P$,点$Q$,点$R$の位置ベクトルを,$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$で表そう.

②四面体$OABC$がある.線分$AB$を$2:3$に内分する点を$P$,
線分$OP$を$10:1$に外分する点を$Q$,線分$CQ$を$3:1$に内分する点を$R$とする.
$\triangle ARB$の重心を$G$とするとき,
$\overrightarrow{OG}$を$\overrightarrow{OA}=\large{\overrightarrow{a}}=\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC},\large{\overrightarrow{c}}$で表そう.
この動画を見る 

【高校数学】 数B-40 点の座標とベクトルの成分

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問題1
$A(1,2,-1),B(0,3,2),C(5,-1,4)$のとき,
次のベクトルを成分で表し,その大きさを求めよう.
①$\overrightarrow{ AB }$

②$\overrightarrow{ BC }$

③4点$A(1,2,4),B(2,-3,2),C(4,-1,5),D$を頂点とする
平行四辺形$ABCD$がある.頂点$D$の座標を求めよう.
この動画を見る 

【高校数学】 数B-34 平面上の点の存在位置③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎O(0.0)、A(2.1)、B(1.2)、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S、tが次の条件を満たし ながら変化するとき、点Pの存在範囲を図示しよう。

①$\displaystyle \frac{1}{2}s+t \leqq 2,s \geqq 0,t \geqq 0$

②$ 1\leqq s \leqq 2 ,0 \leqq t \leqq 1$
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△OABに対し、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S,tが次の条件を満たしながら動くとき、 点Pの存在範囲を図示しよう。

①$s+t \leqq \displaystyle \frac{1}{2},s \geqq 0,t \geqq 0$

②$3s+2t \leqq 3,S \geqq 0,t \geqq 0$
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $において
$s+t=1,s \geqq 0,t \geqq 0\Leftrightarrow$①____________

$s+t \leqq1,s \geqq 0,t \geqq 0 \Leftrightarrow$②____________

$0\leqq s \leqq 1, 0 \leqq ,t \leqq 1 \Leftrightarrow$③____________

④△OABに対し$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB }$とする。
実数s,tが、$s+t=3,s \geqq0、t \geqq 0$を満たしながら動くとき、点Pの存在範囲を図示しよう。
この動画を見る 

【高校数学】 数B-31 ベクトル方程式⑥

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①A(-1,5)、B(3,3)とする。線分ABの垂直二等分線の方程式を求めよう。

②2通線$x-2y-5=0,3x-y+4=0$のなす角aを求めよう。ただし、$0° \leqq x \leqq 90°$とする。
この動画を見る 

【高校数学】 数B-30 ベクトル方程式⑤

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点A(1,-3)を通り、$\vec{ d }$=(2,6)に平行な直線と垂直な直線の方程式を求めよう。

② 直線$2x-3y-5=0$は$\vec{ d }$=(a,2)に平行、$\vec{ n }$=(2.b)に垂直で、 直線$5x+Cy+2=0$に垂直に交わる。定数a,b,Cの値を求めよう。
この動画を見る 

【高校数学】 数B-29 ベクトル方程式④

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
定点$C(\vec{ c })$を中心とする半径rの円は①_________ と表され、 これを円のベクトル方程式という。ちなみに、2点$A(\vec{ a })$、$B(\vec{ b })$を直径の 両端とする円のベクトル方程式は② である。

次の円の方程式をベクトル方程式を利用して求めよう。

③点C(2,3)が中心で、点A(1.1)を通る円

④2点A(1,6)、B(3,0)を直径の両端とする円
この動画を見る 

【高校数学】 数B-28 ベクトル方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
定点$A(\vec{ a })$を通り、$\overrightarrow{ n }(≠\vec{ 0 })$に垂直な直線のベクトル方程式は①__________で、$\vec{ n }$を直線の法線ベクトルという。
また、$ax+by+c=0$において、$\overrightarrow{ n }=(a,b)$はその法線ベクトルである。

◎次の点Aを通り、$\overrightarrow{ n }$が法線ベクトルである直線の方程式を求めよう。

②$A(2,-1),\vec{ n }=(3,4)$

③$A(-1,3),\vec{ n }(5,-1)$
この動画を見る 

【高校数学】 数B-26 ベクトル方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
この動画を見る 

【高校数学】 数B-25 ベクトルと図形③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
この動画を見る 

【高校数学】 数B-24 ベクトルと図形②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$のとき

$S\vec{ a }+t\vec{ b }=S'\vec{ a }+t'\vec{ b } \Leftrightarrow S=S',t=t'$

◎$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$とする。次の等式を満たす実数S,tの値を求めよう。

①$5\vec{ a }+S\vec{ b }=t\vec{ a }-2\vec{ b }$

②$(3S-5)\vec{ a }+t\vec{ b }=\vec{ 0 }$

③$\vec{ c }=2\vec{ a }+3\vec{ b },\vec{ d }=\vec{ a }+2\vec{ b }$のとき、$5\vec{ a }+4\vec{ b }=S\vec{ c }+t\vec{ d }$
この動画を見る 

【高校数学】 数B-23 ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点A,B,Cが一直線上にある $\Leftrightarrow$ ①______となる実数kがある。

② △ABCにおいて、辺ABを3:1に内分する点をP、辺ACを1:2に内分する点をQ、 線分BQを1:2に内分する点をRとする。3点、P、R、Cが一直線上にあることを証明しよう。
この動画を見る 

【高校数学】 数B-22 位置ベクトル③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCと点Pについて、$3\overrightarrow{ AP }+5\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$を満たす。

①点Pの位置を求めよう。

②△PAB:△PBC:△PCAを求めよう。
この動画を見る 

【高校数学】 数B-21 位置ベクトル②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺AB、BCを3:2に内分する点をそれぞれD、E、
ACの中点をF、△ABCの重心をGとする。
次のベクトルを$\overrightarrow{ AB }=\overrightarrow{ b },\overrightarrow{ AC }=\overrightarrow{ c }$で表そう。

①$\overrightarrow{ AD }$

②$\overrightarrow{ AE }$

③$\overrightarrow{ AF }$

④$\overrightarrow{ AG }$

⑤$\overrightarrow{ BC }$

⑥$\overrightarrow{ FG }$

※図は動画内参照
この動画を見る 

【高校数学】 数B-20 位置ベクトル①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点$A(\vec{ a })$、$B(\vec{ a })$を結ぶ線分ABを
m:nに内分する点$P(\vec{ p })$と、m:nに外分する点$Q(\vec{ q })$は

$\overrightarrow{ p }=$①____________

$\overrightarrow{ q }=$②____________

2点A、Bを結ぶ線分ABについて、次の点の位置ベクトルを$\vec{ a }$、$\vec{ b }$で表そう。

③2:3に内分する点

⑤3:4に外分する点

④4:1に外分する点

⑥中点
この動画を見る 
PAGE TOP