平面上のベクトル - 質問解決D.B.(データベース) - Page 4

平面上のベクトル

【数B】ベクトル:ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\overrightarrow{a}=(4,1-5),\overrightarrow{b}=(2m,1)$が等しいとき,$l,m$の値を求めよ.
この動画を見る 

【数B】ベクトルの大きさ、単位ベクトルとは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vert \overrightarrow{a}\vert=5$である$\overrightarrow{a}$がある。
(1) $\overrightarrow{a}$と同じ向きの単位ベクトルを、$\overrightarrow{a}$を用いて表せ。
(2) $\overrightarrow{a}$と平行で、大きさが3のベクトルを、$\overrightarrow{a}$を用いて表せ。
この動画を見る 

【数C】ベクトルの大きさ、単位ベクトルとは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
|vec(a)|=5であるvec(a)がある。
(1) vec(a)と同じ向きの単位ベクトルを、vec(a)を用いて表せ。
(2) vec(a)と平行で、大きさが3のベクトルを、vec(a)を用いて表せ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式を解説していきます.
この動画を見る 

【数C】ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式
この動画を見る 

【数B】ベクトル:ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
aベクトル$+tb$ベクトルの絶対値の最小値を取るtの値について
この動画を見る 

【数C】ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
この動画を見る 

【数B】ベクトル:ベクトルの基本⑧大きさを求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの絶対値を求めるために2乗の計算をしてみた.
この動画を見る 

【数C】ベクトルの基本⑧大きさを求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの絶対値を求めるために2乗の計算をする
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
この動画を見る 

【数C】ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=√3,b=5,a-b=√5のとき、内積a・bを求めよ
この動画を見る 

【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
この動画を見る 

【数C】ベクトルの基本⑥内積の基本計算2 成分を用いて計算する

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

【数B】ベクトル:ベクトルの基本⑥内積の基本計算2 成分を用いて計算する

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る 

【数C】ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

【数B】ベクトル:ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【数C】ベクトルの基本④内積の基本的な考え方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方
直角三角形ABCにおいて内積AB・AC、BA・BC、CA・CB、AB・BCを求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本④内積の基本的な考え方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方に関して解説していきます.
この動画を見る 

【数C】ベクトル平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
|a+tb|はt=□のとき最小値□を取る
この動画を見る 

【数B】平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
この動画を見る 

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$0 \lt t \lt 1$とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを
$t:1-t$に内分する点をそれぞれ$A_1,B_1,C_1,D_1$とする。さらに$A_2,B_2,C_2,D_2$および$A_3,B_3,C_3,D_3$を次の条件を満たすように定める。
$(\ 条件\ )k=1,2$について、点$A_{k+1},B_{k+1},C_{k+1},D_{k+1}$はそれぞれ線分$A_kB_k$,
$B_kC_k,C_kD_k,D_kA_k$を$t:1-t$に内分する。
$\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }$とするとき、以下の問いに答えよ。
(1)$\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b }$ を満たす実数p,q,x,yを
tを用いて表せ。
(2)四角形$A_1B_1C_1D_1$は平行四辺形であることを示せ。
(3)$\overrightarrow{ AD }$と$\overrightarrow{ A_3B_3 }$が平行となるようなtの値を求めよ。

2022筑波大学理系過去問
この動画を見る 

数学を数楽にの川端さん三乗

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
座標関係の図形の求め方に関して解説していきます.
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

【数C】ベクトル平面ベクトル:ベクトルの基本② ベクトルの大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの大きさの求め方
a=(3,4)の大きさを求めよ。
この動画を見る 

【数B】平面ベクトル:ベクトルの基本② ベクトルの大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの大きさの求め方に関して解説していきます.
この動画を見る 

【数C】ベクトル平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更
この動画を見る 

【数B】平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
この動画を見る 

福田の数学〜九州大学2022年文系第2問〜点と平面の距離と対称点

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の4点
$O(0,0,0),A(1,1,0),B(2,1,2),P(4,0,-1)$
を考える。3点O,A,Bを通る平面を$\alpha$とし、$\overrightarrow{ a }=\overrightarrow{ OA }$,
$\overrightarrow{ b }=\overrightarrow{ OB }$とおく。
以下の問いに答えよ。
(1)ベクトル$\overrightarrow{ a },\ \overrightarrow{ b }$の両方に垂直であり、x成分が正であるような、大きさが1
のベクトル$\overrightarrow{ n }$を求めよ。
(2)点Pから平面$\alpha$に垂線を下ろし、その交点をQとおく。
線分PQの長さを求めよ。
(3)平面$\alpha$に関して点Pと対称な点P'の座標を求めよ。

2022九州大学文系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 
PAGE TOP