平面上のベクトル - 質問解決D.B.(データベース) - Page 6

平面上のベクトル

【数B】平面ベクトル:角の二等分線上の位置ベクトル(類神戸大学)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上に原点Oから出る、相異なる2本の半直線$OX、OY(\angle XOY\lt 180°)$上にそれぞれOと異なる2点A,Bをとる。
(1)$a=OA, b=OB$とする。点Cが$∠XOY$の二等分線上にあるとき、OCを実数$t(t\geqq 0)$とa, bで表せ。
(2)$∠XOY$の二等分線と$∠XAB$の二等分線の交点をPとする。$OA=2, B=3, AB=4$のとき、OPをa, bで表せ。
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 平面上に3点O,A,Bがあり、\\
|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1\\
を満たしている。\\
\\
(1)|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}\\
\\
(2)\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}\\
\\
(3)実数s,tが\\
s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1\\
を満たしながら変化するとき、\\
\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }\\
で定まる点Pの存在する範囲の面積は\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}
である。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 

【数C】平面ベクトル:円のベクトル方程式(2点が直径の両端)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
この動画を見る 

【数B】平面ベクトル:円のベクトル方程式(2点が直径の両端)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する\\
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC\\
と交わる点をRとする。このとき\\
\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }\\
である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 全統高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

【数B】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

【数C】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

【数C】ベクトル:2021年高3第1回駿台全国模試 (文系)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=1、OB=2、∠AOB=θ(0<θ<π)であるとする。
∠AOBの二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは (a・p)²-2(b・p)+4=0 を満たすと する。
ただし、a=OA、b=OB、p=OPとする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,θで表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、OH・p=b・pであることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 点Oを原点とする座標平面上の点P,Q,Rを、ベクトル\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)を用い、\\
位置ベクトル\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }で定める。\\
ここで、f(t),g(t)は、実数tを用いて、\\
f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)で表される。\\
(1)\overrightarrow{ a }と\overrightarrow{ b }のなす角を\thetaとする。ただし、0 \leqq \theta \leqq \piとする。このとき、\\
\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} である。\\
\\
(2)t=-\boxed{\ \ ウ\ \ }のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは\\
異なる3点となり、t=\boxed{\ \ エ\ \ }のときその3点が一直線上に並ぶ。\\
\\
(3)-\frac{4}{3} \leqq t \leqq 4の範囲において、上記(2)以外のとき、\triangle PQRの面積は\\
t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}で最大値\boxed{\ \ キク\ \ }をとる。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)点Oを中心とする半径1の円に内接する三角形ABCにおいて\\
-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }\\
が成り立っているとする。また直線OAと直線BCの交点をPとする。\\
このとき線分BC,OPの長さを求めるとBC=\boxed{\ \ (あ)\ \ },OP=\boxed{\ \ (い)\ \ }\\
である。さらに三角形ABCの面積は\boxed{\ \ (う)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

【数B】ベクトル:2021年高3第1回全統記述模試

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} \triangle OABにおいて、辺OAを1:1に内分する点をD、辺OBを2:1に内分する点\\
をEとする。線分BDと線分AEの交点をF、\overrightarrow{ OA }=\overrightarrow{ a },\ \overrightarrow{ OB }=\overrightarrow{ b },\ |\overrightarrow{ a }|=a,\ |\overrightarrow{ b }|=b\\
として、次の問いに答えよ。\\
(1)\overrightarrow{ OF }を\overrightarrow{ a },\ \overrightarrow{ b }を用いて表せ。\\
さらに、\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF } として、以下の問いに答えよ。\\
(2)内積\overrightarrow{ a }・\overrightarrow{ b }をa,\ bを用いて表せ。\\
(3)b=1のとき、aの取りうる値の範囲を求めよ。\\
(4)b=1のとき、\triangle OABの面積Sの最大値と、そのときのaの値を求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 点Oを中心とする半径1の円の周上に相異なる3点A,B,Cがあり、実数b,c\\
に対して\\
\overrightarrow{ OA }+b\ \overrightarrow{ OB }+c\ \overrightarrow{ OC }=\overrightarrow{ 0 }\\
の関係を満たしている。このとき、次の問いに答えよ。\\
(1)\angle BAO=\beta,\ \angle CAO=\gammaとするとき、bとcの値を求めよ。\\
(2)\triangle ABCの垂心をHとする。b=cのとき、\overrightarrow{ OH }を\overrightarrow{ OA }およびbを用いて表せ。
\end{eqnarray}

2021早稲田大学教育学部過去問
この動画を見る 

【数B】平面ベクトル:ベクトル方程式 ベクトルと軌跡:座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たす(続きは概要欄で)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
この動画を見る 

【数C】平面ベクトル:ベクトル方程式 ベクトルと軌跡:座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たす(続きは概要欄で)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その2

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その1

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 

【数C】平面ベクトル:ベクトルの終点の存在範囲 その2

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#4S数学Ⅱ+B(旧課程2021年以前)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学B 平面のベクトル】
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)s+2t=3
(2)1≦s+t≦2, s≧0, t≧0
この動画を見る 

【数C】平面ベクトル:ベクトルの終点の存在範囲 その1

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#4S数学Ⅱ+B(旧課程2021年以前)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学B 平面のベクトル】
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)s+2t=3
(2)1≦s+t≦2, s≧0, t≧0
この動画を見る 

【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面上のベクトル#1次関数#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
この動画を見る 

【数B】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年高2第2回駿台全国模試第7問解説してみた!
この動画を見る 

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta,  \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。

(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。

(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【数B】平面ベクトル:高2全統共通テスト模試(ベクトル)を解説してみた!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
高2全統共通テスト模試(ベクトル)を解説してみた!
この動画を見る 

【数C】平面ベクトル:高2全統共通テスト模試(ベクトル)を解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
高2全統共通テスト模試のベクトルの解説です。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$O$を原点とする座標空間に2点$A(-1,2,0), B(2,p,q)$がある。ただし、$q \gt 0$とする。
線分$AB$の中点$C$から直線$OA$に引いた垂線と直線$OA$の交点$D$は、線分$OA$を9:1に内分
するものとする。また、点$C$から直線$OB$に引いた垂線と直線$OB$の交点Eは、線分$OB$を$3:2$
に内分するものとする。

(1)点Bの座標を求めよう。
$|\overrightarrow{ OA }|^2=\boxed{\ \ ア\ \ }$である。また、$\overrightarrow{ OD }=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウエ\ \ }}\overrightarrow{ OA }$であることにより、
$\overrightarrow{ CD }=\displaystyle \frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\overrightarrow{ OA }-\displaystyle \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\overrightarrow{ OB }$と表される。$\overrightarrow{ OA } \bot \overrightarrow{ CD }$から
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ ケ\ \ }$ $\ldots$①
である。同様に、$\overrightarrow{ CE }$を$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表すと、$\overrightarrow{ OB } \bot \overrightarrow{ CE }$から
$|\overrightarrow{ OB }|^2=20$ $\ldots$②
を得る。

①と②、および$q \gt 0$から、$B$の座標は$\left(2, \boxed{\ \ コ\ \ }, \sqrt{\boxed{\ \ サ\ \ }}\right)$である。


(2)3点$O,A,B$の定める平面を$\alpha$とし、点$(4, 4, -\sqrt7)$を$G$とする。
また、$\alpha$上に点$H$を$\overrightarrow{ GH } \bot \overrightarrow{ OA }$と$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つようにとる。$\overrightarrow{ OH }$を
$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表そう。
$H$が$\alpha$上にあることから、実数$s,t$を用いて
$\overrightarrow{ OH }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表される。よって
$\overrightarrow{ GH }=\boxed{\ \ シ\ \ }\ \overrightarrow{ OG }+s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
である。これと、$\overrightarrow{ GH } \bot \overrightarrow{ OA }$および$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つことから、
$s=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}, t=\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}$が得られる。ゆえに
$\overrightarrow{ OH }=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\ \overrightarrow{ OA }+\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}\ \overrightarrow{ OB }$
となる。また、このことから、$H$は$\boxed{\boxed{\ \ ツ\ \ }}$であることがわかる。

$\boxed{\boxed{\ \ ツ\ \ }}$の解答群
⓪三角形$OAC$の内部の点
①三角形$OBC$の内部の点
②点$O,C$と異なる、線分$OC$上の点
③三角形$OAB$の周上の点
④三角形$OAB$の内部にも周上にもない点

2021共通テスト過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。

$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。

次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$


最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 
PAGE TOP