数学(高校生)
【数学】公式が覚えられないなら、この動画から始めよう!数学の公式の暗記量を必要最小限におさえる方法【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
公式が覚えられないなら、この動画から始めよう!
「数学の公式の暗記量を必要最小限におさえる方法」についてのお話です。
この動画を見る
公式が覚えられないなら、この動画から始めよう!
「数学の公式の暗記量を必要最小限におさえる方法」についてのお話です。
【数学】計算力不足で悩む中高生必見!計算力をつける勉強法を知り、数学で点を取ろう!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
計算力不足で悩む中高生必見!
「計算力をつける勉強法」についてのお話です。
この動画を見る
計算力不足で悩む中高生必見!
「計算力をつける勉強法」についてのお話です。
【高校数学】 数Ⅱ-96 三角関数のグラフ②
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=2\sin \theta$
②$y=\cos\theta+1$
③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=2\sin \theta$
②$y=\cos\theta+1$
③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
【高校数学】 数Ⅱ-95 三角関数のグラフ①
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=\sin\theta$
②$y=\cos\theta$
③$y=\tan\theta$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=\sin\theta$
②$y=\cos\theta$
③$y=\tan\theta$
【高校数学】 数Ⅱ-94 三角関数の性質⑤
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。
①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$
②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$
③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
この動画を見る
◎次の式を簡単にしよう。
①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$
②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$
③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
【高校数学】 数Ⅱ-93 三角関数の性質④
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$
②$\cos \displaystyle \frac{11}{6}π$
③$\tan \displaystyle \frac{7}{6}π$
[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____
$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____
$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____
$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____
$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____
$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____
$\sin (π-\theta)=$⑩____
$\cos (π-\theta)=$⑪____
$\tan (π-\theta)=$⑫____
この動画を見る
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$
②$\cos \displaystyle \frac{11}{6}π$
③$\tan \displaystyle \frac{7}{6}π$
[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____
$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____
$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____
$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____
$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____
$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____
$\sin (π-\theta)=$⑩____
$\cos (π-\theta)=$⑪____
$\tan (π-\theta)=$⑫____
【高校数学】 数Ⅱ-92 三角関数の性質③
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
この動画を見る
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
【高校数学】 数Ⅱ-91 三角関数の性質②
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta \cos \theta=\displaystyle \frac{1}{2}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$のとき、次の式の値を求めよう。
①$\sin \theta +\cos \theta$
②$sin^3 \theta+\cos^3 \theta$
この動画を見る
◎$\sin \theta \cos \theta=\displaystyle \frac{1}{2}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$のとき、次の式の値を求めよう。
①$\sin \theta +\cos \theta$
②$sin^3 \theta+\cos^3 \theta$
【高校数学】 数Ⅱ-90 三角関数の性質①
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。
①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$
②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
この動画を見る
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。
①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$
②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
【高校数学】 数Ⅱ-89 一般角の三角関数
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
また、単位円について同様に考えると、
$\sin \theta=$④____
$\cos \theta=$⑤____
ちなみに、三角関数の値の範囲は、
⑥____$\leqq \sin \theta \leqq$____
⑦____$\leqq \cos \theta \leqq$____
$\tan \theta=$恥数全体。
※図は動画内参照
この動画を見る
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
また、単位円について同様に考えると、
$\sin \theta=$④____
$\cos \theta=$⑤____
ちなみに、三角関数の値の範囲は、
⑥____$\leqq \sin \theta \leqq$____
⑦____$\leqq \cos \theta \leqq$____
$\tan \theta=$恥数全体。
※図は動画内参照
【高校数学】 数Ⅱ-88 扇形の弧の長さと面積
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____
◎次の扇形の弧の長さと面積を求めよう。
③半径が4、中心角が$\displaystyle \frac{π}{5}$
④半径が3、中心角が150°
この動画を見る
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____
◎次の扇形の弧の長さと面積を求めよう。
③半径が4、中心角が$\displaystyle \frac{π}{5}$
④半径が3、中心角が150°
【高校数学】 数Ⅱ-87 一般角と弧度法
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の角の憧憬を図示しよう。
①70°
②-150°
③400°
④-635°
◎次の角を、度数は弧度に、弧度は度数に直そう。
⑤30°
⑥135°
⑦210°
⑧$\displaystyle \frac{π}{3}$
⑨$\displaystyle \frac{2}{15}π$
⑩$π$
この動画を見る
◎次の角の憧憬を図示しよう。
①70°
②-150°
③400°
④-635°
◎次の角を、度数は弧度に、弧度は度数に直そう。
⑤30°
⑥135°
⑦210°
⑧$\displaystyle \frac{π}{3}$
⑨$\displaystyle \frac{2}{15}π$
⑩$π$
【高校数学】 数Ⅱ-86 絶対値を含む領域
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$y \geqq | x+2 |$
②$ | x-y | \leqq 2$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$y \geqq | x+2 |$
②$ | x-y | \leqq 2$
【高校数学】 数Ⅱ-85 領域と最大・最小③
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x-3y\geqq-6,x+2y\geqq4,3x+y\leqq12$
を満たすとき、$x^2+y^2$の最大値および最小値を求めよう。
この動画を見る
①x,yが3つの不等式$x-3y\geqq-6,x+2y\geqq4,3x+y\leqq12$
を満たすとき、$x^2+y^2$の最大値および最小値を求めよう。
【高校数学】 数Ⅱ-84 領域と最大・最小②
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x+2y-4\geqq0,3x+y-12\leqq0,x-3y+6\geqq0$を満たすとき、$4x+y$の最大値および最小値を求めよう。
この動画を見る
①x,yが3つの不等式$x+2y-4\geqq0,3x+y-12\leqq0,x-3y+6\geqq0$を満たすとき、$4x+y$の最大値および最小値を求めよう。
【高校数学】 数Ⅱ-83 領域と最大・最小①
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①x,yが4つの不等式$x \geqq 0,y\geqq0,x+3y\leqq6,2x+y\leqq7$を満たすとき、$x+y$の最大値および最小値を求めよう。
この動画を見る
①x,yが4つの不等式$x \geqq 0,y\geqq0,x+3y\leqq6,2x+y\leqq7$を満たすとき、$x+y$の最大値および最小値を求めよう。
【高校数学】 数Ⅱ-82 不等式の表す領域⑤
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$y \geqq x^2,y\leqq2x+3$
②$x^2+y-4\lt0,x^2-2x-y\lt0$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$y \geqq x^2,y\leqq2x+3$
②$x^2+y-4\lt0,x^2-2x-y\lt0$
【高校数学】 数Ⅱ-81 不等式の表す領域④
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$(x-2y)(x-2) \lt 0$
②$(x-y)(x^2+y^2-1) \geqq 0$
③$(4x-y+1)(2x+y-4) \gt 0$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$(x-2y)(x-2) \lt 0$
②$(x-y)(x^2+y^2-1) \geqq 0$
③$(4x-y+1)(2x+y-4) \gt 0$
【高校数学】 数Ⅱ-80 不等式の表す領域③
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y - 3 \lt 0 \\
2x - y \lt 6
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leqq 4 \\
2x - y - 2 \geqq 0
\end{array}
\right.
\end{eqnarray}$
③$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \geqq 9 \\
2x + 3y + 6 \gt 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y - 3 \lt 0 \\
2x - y \lt 6
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leqq 4 \\
2x - y - 2 \geqq 0
\end{array}
\right.
\end{eqnarray}$
③$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \geqq 9 \\
2x + 3y + 6 \gt 0
\end{array}
\right.
\end{eqnarray}$
【高校数学】 数Ⅱ-79 不等式の表す領域②
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$x^2+y^2 \lt 4$
②$x^2+y^2 \geqq 9$
③$x^2+y^2+6x-8y \leqq 0$
④$x^2+y^2-2x-6y+1 \gt 0$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$x^2+y^2 \lt 4$
②$x^2+y^2 \geqq 9$
③$x^2+y^2+6x-8y \leqq 0$
④$x^2+y^2-2x-6y+1 \gt 0$
【高校数学】 数Ⅱ-78 不等式の表す領域①
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。
①$y \geqq x+2$
②$2x-y-6 \gt 0$
③$y \leqq 3$
④$x- \gt -1$
この動画を見る
◎次の不等式の表す領域を図示しよう。
①$y \geqq x+2$
②$2x-y-6 \gt 0$
③$y \leqq 3$
④$x- \gt -1$
【高校数学】 数Ⅱ-77 軌跡と方程式③
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①点Qが直線$2x-y+5=0$上を動くとき、原点Oと点Qを結ぶ線分OQを 2:1に内分する点Pの軌跡を求めよう。
この動画を見る
①点Qが直線$2x-y+5=0$上を動くとき、原点Oと点Qを結ぶ線分OQを 2:1に内分する点Pの軌跡を求めよう。
【高校数学】 数Ⅱ-76 軌跡と方程式②
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす点Pの軌跡を求めよう。
①2点A(-2.0).B(2.0)からの距離の2乗の差$AP^2-BP^2$が24である点P
②2点A(-1.0),B(2、0)からの距離の比が1:2である点P
この動画を見る
◎次の条件を満たす点Pの軌跡を求めよう。
①2点A(-2.0).B(2.0)からの距離の2乗の差$AP^2-BP^2$が24である点P
②2点A(-1.0),B(2、0)からの距離の比が1:2である点P
【高校数学】 数Ⅱ-75 軌跡と方程式①
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす点Pの軌跡を求めよう。
①y軸との距離が4である点P
②点(4.-1)からの距離が3である点P
③2点A(-1.0)、B(1.2)から等距離にある点P
この動画を見る
◎次の条件を満たす点Pの軌跡を求めよう。
①y軸との距離が4である点P
②点(4.-1)からの距離が3である点P
③2点A(-1.0)、B(1.2)から等距離にある点P
【高校数学】 数Ⅱ-74 2つの円④
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①円$x^2+y^2=50$と直線$3x+y=20$の2つの交点と点(10,0)を通る円の方程式を求めよう。
②2つの円$x^2+y^2=5、x^2+y^2-2x-4y+1=0$の交点を通る直線の方程式を求めよう。
この動画を見る
①円$x^2+y^2=50$と直線$3x+y=20$の2つの交点と点(10,0)を通る円の方程式を求めよう。
②2つの円$x^2+y^2=5、x^2+y^2-2x-4y+1=0$の交点を通る直線の方程式を求めよう。
【高校数学】 数Ⅱ-73 2つの円③
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの円の共有点の座標を求めよう。
①$x^2+y^2=10, x^2+y^2-2x-y-5=0$
②$x^2+y^2= 5, x^2+y^2-6x-12y+25=0$
この動画を見る
◎次の2つの円の共有点の座標を求めよう。
①$x^2+y^2=10, x^2+y^2-2x-y-5=0$
②$x^2+y^2= 5, x^2+y^2-6x-12y+25=0$
【高校数学】 数Ⅱ-72 2つの円②
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①中心が点(5,12)で、円$x^2+y^2=9$に外接する円を求めよう。
②中心が点(4,-3)で、円$x^2+y^2=49$に内接する円を求めよう。
この動画を見る
①中心が点(5,12)で、円$x^2+y^2=9$に外接する円を求めよう。
②中心が点(4,-3)で、円$x^2+y^2=49$に内接する円を求めよう。
【高校数学】 数Ⅱ-71 2つの円①
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの円の位置関係を、(2点で交わる・外接する・内接する・共有点がない)から選ぼう。
①$x^2+y^2=9, (x-4)^2+(y-3)^2=4$
②$x^2+y^2=9,x^2+(y+2)^2=1$
③$x^2+y^2-6x-8y=0, (x-9)^2+(y-4)^2=25$
この動画を見る
◎次の2つの円の位置関係を、(2点で交わる・外接する・内接する・共有点がない)から選ぼう。
①$x^2+y^2=9, (x-4)^2+(y-3)^2=4$
②$x^2+y^2=9,x^2+(y+2)^2=1$
③$x^2+y^2-6x-8y=0, (x-9)^2+(y-4)^2=25$
【高校数学】 数Ⅱ-70 円の接線の方程式③
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2円$x^2+y^2=1$、$(x-3)^2+y^2=4$の両方に接する接線の方程式を求めよう。
この動画を見る
①2円$x^2+y^2=1$、$(x-3)^2+y^2=4$の両方に接する接線の方程式を求めよう。
【高校数学】 数Ⅱ-69 円の接線の方程式②
単元:
#数Ⅱ#図形と方程式#円と方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①円$x^2+y^2+4x-6y-12=0$上の点(1、7)における接線の方程式を求めよう。
②円$x^2+y^2=20$と直線$y=2x+k$が接するとき、定数aの値を求めよう。
この動画を見る
①円$x^2+y^2+4x-6y-12=0$上の点(1、7)における接線の方程式を求めよう。
②円$x^2+y^2=20$と直線$y=2x+k$が接するとき、定数aの値を求めよう。