中3数学
2023高校入試数学解説99問目 円錐の展開図 鳥取県(改)
【3分で勝負するには!】二次関数:長崎県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
関数$ y=x^2 $のグラフ上に2点A,Bがある.
点A:x=-2,点B:x=1
(1)点Aのy座標を求めよ.
(2)直線ABの式を求めよ.
(3)$ \triangle OAB $の面積を求めよ.
長崎県高校過去問
この動画を見る
関数$ y=x^2 $のグラフ上に2点A,Bがある.
点A:x=-2,点B:x=1
(1)点Aのy座標を求めよ.
(2)直線ABの式を求めよ.
(3)$ \triangle OAB $の面積を求めよ.
長崎県高校過去問
2023高校入試数学解説94問目 正四面体の中の三角形 茨城県
単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
△CPQはどんな三角形か
ア.正三角形
イ.二等辺三角形
ウ.直角三角形
エ.直角二等辺三角形
*図は動画内参照
2023茨城県
この動画を見る
△CPQはどんな三角形か
ア.正三角形
イ.二等辺三角形
ウ.直角三角形
エ.直角二等辺三角形
*図は動画内参照
2023茨城県
これなんでバツなん?
高等学校入学試験予想問題:三重県公立高等学校~全部入試問題
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $
$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?
$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $
$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?
$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
佐賀県立高校入試2021年5⃣(4)「相似」
単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年5⃣(4)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS$_{1}$、△BEDの面積をS$_{2}$とするとき、S$_{1}$:S$_{2}$を
最も簡単な整数の比で表しなさい。
この動画を見る
佐賀県立高校入試2021年5⃣(4)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS$_{1}$、△BEDの面積をS$_{2}$とするとき、S$_{1}$:S$_{2}$を
最も簡単な整数の比で表しなさい。
2023高校入試数学解説86問目 二次関数と変域の応用 埼玉県学校選択問題(改)
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=2x^2$についてxの変域が$a \leqq x \leqq a+4$のときyの変域は$0 \leqq y \leqq 18$となった。
aの値をすべて求めよ。
2023埼玉県
この動画を見る
$y=2x^2$についてxの変域が$a \leqq x \leqq a+4$のときyの変域は$0 \leqq y \leqq 18$となった。
aの値をすべて求めよ。
2023埼玉県
30秒ほどで高校入試の悪問を解説する動画~全国入試問題解法 #shorts #数学 #高校受験
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (x^2+2022)^2-4092529x^2$を因数分解しなさい.
中大杉並高校過去問
この動画を見る
$ (x^2+2022)^2-4092529x^2$を因数分解しなさい.
中大杉並高校過去問
2023高校入試数学解説84問目 一次関数と二次関数 埼玉県学校選択問題
単元:
#数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照
2023埼玉県
この動画を見る
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照
2023埼玉県
2023高校入試数学解説83問目 球の切り口の面積は? 埼玉県
高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#相似な図形#文章題#文章題その他#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.
$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?
$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
この動画を見る
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.
$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?
$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
2023高校入試数学解説81問目 二次関数の変域 埼玉県
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=2x^2$において
xの変域は$a \leqq x \leqq 1$
yの変域は$0 \leqq y \leqq 18$
aの値を求めよ
2023埼玉県
この動画を見る
$y=2x^2$において
xの変域は$a \leqq x \leqq 1$
yの変域は$0 \leqq y \leqq 18$
aの値を求めよ
2023埼玉県
2023高校入試数学解説80問目 標本調査と全数調査 埼玉県
単元:
#数学(中学生)#中3数学#標本調査#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
標本調査で行われるものを2つ選べ
ア.ある河川の水質調査
イ.ある学校でおこなう健康診断
ウ.テレビ番組の視聴率調査
エ.日本の人口を調べる国勢調査
2023埼玉県
この動画を見る
標本調査で行われるものを2つ選べ
ア.ある河川の水質調査
イ.ある学校でおこなう健康診断
ウ.テレビ番組の視聴率調査
エ.日本の人口を調べる国勢調査
2023埼玉県
佐賀県立高校入試2021年5⃣(1)~(3)「相似」
単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年5⃣(1)~(3)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
(1)線分AEの長さを求めなさい。
(2)△ABC$\sim$△BEDであることを証明しなさい。
(3)△ABEの面積を求めなさい。
この動画を見る
佐賀県立高校入試2021年5⃣(1)~(3)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
(1)線分AEの長さを求めなさい。
(2)△ABC$\sim$△BEDであることを証明しなさい。
(3)△ABEの面積を求めなさい。
2023高校入試数学解説77問目 円周角 愛知県
【たったこれだけの条件で…!】図形:広島大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
点A,C,Dは円O上の点である.
円の中心Oおよび点Dは線分BC上の点である.
$ \angle AOC=68°$のとき,$ \angle ABC $の大きさを求めよ.
広大付属高校過去問
この動画を見る
点A,C,Dは円O上の点である.
円の中心Oおよび点Dは線分BC上の点である.
$ \angle AOC=68°$のとき,$ \angle ABC $の大きさを求めよ.
広大付属高校過去問
佐賀県立高校入試2021年4⃣(5)「二次関数、一次関数」
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年4⃣(5)「二次関数、一次関数」
-----------------
動画内の図のように、関数 $y = ax^2$のグラフ上に3点A、B、Cがある。
点の座標は A(2, 2) 、点Bのx座標は-6、点Cのx座標は4である。
点Aを通りy軸に平行な直線と、2点B、Cを通る直線との交点をPとする。
また、点Pを通り△ABCの面積を2等分する直線と、2点A、Bを通る直線との交点をQとする。
このとき(ア)、(イ)の問いに答えなさい。
(ア) △PACの面積を求めなさい。
(イ) 点Qの座標を求めなさい。
この動画を見る
佐賀県立高校入試2021年4⃣(5)「二次関数、一次関数」
-----------------
動画内の図のように、関数 $y = ax^2$のグラフ上に3点A、B、Cがある。
点の座標は A(2, 2) 、点Bのx座標は-6、点Cのx座標は4である。
点Aを通りy軸に平行な直線と、2点B、Cを通る直線との交点をPとする。
また、点Pを通り△ABCの面積を2等分する直線と、2点A、Bを通る直線との交点をQとする。
このとき(ア)、(イ)の問いに答えなさい。
(ア) △PACの面積を求めなさい。
(イ) 点Qの座標を求めなさい。
2023高校入試数学解説71問目 2次関数の変域 千葉県
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y= \frac{1}{3}x^2$において
xの変域は$-3 \leqq x \leqq a$
yの変域は$0 \leqq y \leqq 3$
整数aの値をすべて求めよ
2023千葉県
この動画を見る
$y= \frac{1}{3}x^2$において
xの変域は$-3 \leqq x \leqq a$
yの変域は$0 \leqq y \leqq 3$
整数aの値をすべて求めよ
2023千葉県
2023高校入試数学解説65問目 気付けば一瞬!!座標平面上の円 城北高校 (再)
単元:
#数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形OCBAは長方形
Pの座標は?
*図は動画内参照
2023城北学園高等学校
この動画を見る
四角形OCBAは長方形
Pの座標は?
*図は動画内参照
2023城北学園高等学校
2023高校入試数学解説66問目 式の値 千葉県
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$x= \sqrt 3 + 2 , y= \sqrt 3 -2$
$5x^2 -5y^2 = ?$
2023千葉県
この動画を見る
$x= \sqrt 3 + 2 , y= \sqrt 3 -2$
$5x^2 -5y^2 = ?$
2023千葉県
高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $
(4)$ 2x^2+3x-1=0 $
$ x=? $
$ \boxed{2}$
$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?
$\boxed{3}$
$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る
$ \boxed{1}$
(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $
(4)$ 2x^2+3x-1=0 $
$ x=? $
$ \boxed{2}$
$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?
$\boxed{3}$
$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
賀県立高校入試2021年4⃣(1)~(4)「二次関数、一次関数」
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
賀県立高校入試2021年4⃣(1)~(4)「二次関数、一次関数」
-----------------
動画内の図のように、関数$y=ax^2$のグラフ上に3点A、B、Cがある。
点Aの座標はA(2.2)、点Bの$x$座標は-6、点Cの$x$座標は4である。
(1)aの値を求めなさい。
(2)点Cの$y$座標を求めなさい。
(3)2点B、Cを通る直線の切片を求めなさい。
(4)点Aを通り△ABCの面積を2等分する直線と、2点B、Cを通る直線との交点の座標を求めなさい。
この動画を見る
賀県立高校入試2021年4⃣(1)~(4)「二次関数、一次関数」
-----------------
動画内の図のように、関数$y=ax^2$のグラフ上に3点A、B、Cがある。
点Aの座標はA(2.2)、点Bの$x$座標は-6、点Cの$x$座標は4である。
(1)aの値を求めなさい。
(2)点Cの$y$座標を求めなさい。
(3)2点B、Cを通る直線の切片を求めなさい。
(4)点Aを通り△ABCの面積を2等分する直線と、2点B、Cを通る直線との交点の座標を求めなさい。
【今後増える傾向 !?】整数:大阪教育大学附属高等学校池田校舎~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
18の正の約数の平方根のうち,すべての正の数の和は
$ (1+\sqrt2)x $
という式で表される.
$ x $の値を求めなさい.
大教大高校池田過去問
この動画を見る
18の正の約数の平方根のうち,すべての正の数の和は
$ (1+\sqrt2)x $
という式で表される.
$ x $の値を求めなさい.
大教大高校池田過去問
2023高校入試数学解説58問目 式の値 明大中野
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{x} - \frac{2}{y} = 3$のとき
$\frac{6x-3y}{3xy -2x+y} = ?$
2023明治大学付属中野高等学校
この動画を見る
$\frac{1}{x} - \frac{2}{y} = 3$のとき
$\frac{6x-3y}{3xy -2x+y} = ?$
2023明治大学付属中野高等学校
中学生向け図形問題
🍫【流れが分れば必ず解ける!】二次方程式:明治大学付属明治高等学校高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中3数学#方程式#2次方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ q $の値を求めよ.
①$ x^2+(a+1)(a+2)x-2a-8=0 $
②$ x^2-(a+4)x+2a^2+6a+4=0 $
①②は,$ x-q $を共通な解としてもつ.
①の解が$ x=p,q $
②の解が$ x=p,r $
($ p,q,r$はすべて異なる数とする.)
明大明治学校過去問
この動画を見る
$ q $の値を求めよ.
①$ x^2+(a+1)(a+2)x-2a-8=0 $
②$ x^2-(a+4)x+2a^2+6a+4=0 $
①②は,$ x-q $を共通な解としてもつ.
①の解が$ x=p,q $
②の解が$ x=p,r $
($ p,q,r$はすべて異なる数とする.)
明大明治学校過去問
【中学数学】有名な三平方の定理の比~有名角の覚え方など~【中3数学】
単元:
#数学(中学生)#中3数学#三平方の定理
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理から導ける直角三角形の有名な比です。
これは受験生全員が知っているといってもいいくらい有名なので、みなさんは必ず使えるようになりましょう。
この動画を見る
三平方の定理から導ける直角三角形の有名な比です。
これは受験生全員が知っているといってもいいくらい有名なので、みなさんは必ず使えるようになりましょう。
2023高校入試解説37問目 早稲田実業最初の一問 因数分解
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$(x+1)a^2 -2xa +x -1$
2023早稲田実業学校
この動画を見る
因数分解せよ
$(x+1)a^2 -2xa +x -1$
2023早稲田実業学校
佐賀県立高校入試2021年「二次方程式」
単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年「二次方程式」
-----------------
三角形と長方形がある。
三角形は高さが底辺の長さの3倍であり、長方形は横の長さが縦の長さよりも2cm長い。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)
長方形の縦の長さが$3cm$のとき、長方形の面積を求めなさい。
(イ)
三角形の面積が$6cm^2$とき、三角形の底辺の長さを求めなさい。
(ウ)
三角形の底辺の長さと、長方形の縦の長さが等しいとき、三角形の面積が長方形の面積より$6cm^2$回大きくなった。
このとき、三角形の底辺の長さを求めなさい。
ただし、三角形の底辺の長さを$xcm$として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
この動画を見る
佐賀県立高校入試2021年「二次方程式」
-----------------
三角形と長方形がある。
三角形は高さが底辺の長さの3倍であり、長方形は横の長さが縦の長さよりも2cm長い。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)
長方形の縦の長さが$3cm$のとき、長方形の面積を求めなさい。
(イ)
三角形の面積が$6cm^2$とき、三角形の底辺の長さを求めなさい。
(ウ)
三角形の底辺の長さと、長方形の縦の長さが等しいとき、三角形の面積が長方形の面積より$6cm^2$回大きくなった。
このとき、三角形の底辺の長さを求めなさい。
ただし、三角形の底辺の長さを$xcm$として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。