数学(中学生) - 質問解決D.B.(データベース) - Page 92

数学(中学生)

【数Ⅲ-163】区分求積法②

アイキャッチ画像
単元: #数学(中学生)#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分求積法②)

Q.次の極限値を求めよ。

①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
この動画を見る 

【中学数学】三角形の合同の証明問題が誰でもできるようになる方法~数学苦手はみないと損です~

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角形の合同の証明問題解説動画です
この動画を見る 

【中学数学】平方根:平方根の値の範囲をわかりやすく解説!

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
①$2<\sqrt a≦3$を満たす自然数aをすべて求めなさい。
②$2<\sqrt a≦5.2$を満たす自然数aがいくつあるか求めなさい。
この動画を見る 

【中学数学】2次方程式:√2x²-3x+√2=0の解を求めよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #新中学問題集#新中学問題集(数学)発展編vol.3#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{2x^2}-3x+\sqrt=0$の解を求めよ。
この動画を見る 

【数学】便利すぎる!!日常でのルートの使い方

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
日常でのルートの使い方紹介動画です
この動画を見る 

【数学】三平方の定理の比の法則~ピタゴラス数の出し方~

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理の比の法則 ピタゴラス数の出し方解説動画です
この動画を見る 

【中学数学】関数y=ax²:2次関数y=ax²の変化の割合を素早く求める方法!学校では教えてくれない必殺技!!

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=\dfrac{1}{2}x^2$で、xの値が2から4まで増加するときの変化の割合を求めましょう。
この動画を見る 

【中学数学】中高一貫校問題集2(代数編)67:平方根:√1 /24,1/5,√1/20,1/6の大小を比較せよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
教材: #TK数学#TK数学問題集2(代数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
√1 /24,1/5,√1/20,1/6の大小を比較せよ。
この動画を見る 

【中学数学】 2次方程式:x²-5x-4=0の解を求めよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x²-5x-4=0$の解を求めよ。
この動画を見る 

【中学数学】多項式:工夫して式を展開しよう!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開せよ。
1問目 $(x-2)(x+2)(x²+4)$
2問目 $(x-2)(x+1)(x-1)(x+2)$
3問目 $(x-2)(x+5)(x-3)(x+4)$
この動画を見る 

【中学数学】三平方の定理の計算の裏技~2乗の計算は不要~

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理の計算の裏技紹介動画です
この動画を見る 

【数学】平方数の語呂合わせ~11から29まで覚えよう~

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平方数の語呂合わせ~11から29まで覚えよう~
この動画を見る 

【中学数学】関数:比例、反比例、1次関数、2次関数のそれぞれの特徴とポイントをわかりやすく解説!!

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#比例・反比例#1次関数#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
比例、反比例、1次関数、2次関数のそれぞれの特徴とポイントをわかりやすく解説します!!
この動画を見る 

【一次関数】応用問題の定番!正方形を作る座標は?座標を文字で置く高等テクニックをマスターしよう!【生徒からの質問16】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: こばちゃん塾
問題文全文(内容文):
下の図のように、y=ー×+6とy=2xのグラフ上に長方形になるようにP.Q.R,Sをとる。この時、四角形PQRSが正方形となるPのx座標を求めましょう。
*図は動画内参照
この動画を見る 

【中学数学】平方根:√5の整数部分をa、小数部分をbとするとき、a²-b²の値を求めましょう!

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt5$の整数部分をa、小数部分をbとするとき、$a²-b²$の値を求めましょう
この動画を見る 

【中学数学】平方根:√2=1.414を使って近似値を求めよう!根号の変形方法は?

単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt2=1.414$のとき、次の値を求めよ。
(1)$\sqrt{50}$
(2)$\sqrt{18}$
(3)$\sqrt{200}$
(4)$\sqrt{20000}$
(5)$\sqrt{0.02}$
この動画を見る 

【数学】平方根の見方が変わる真実を教えます~知らないと損です~

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平方根の見方が変わる 紹介動画です
この動画を見る 

多項定理

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(x^3+x+\dfrac{1}{x^2}\right)^{10}$の$x^4$の係数を求めよ.
この動画を見る 

連立方程式が4つの解を持つ条件

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
 8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
この動画を見る 

【最新】【高校入試】令和2年度 岡山県立高校入試(数学)を元大手塾講師が全問解説します!!

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#岡山県公立高校入試
指導講師: こばちゃん塾
問題文全文(内容文):
1⃣
①4+(-8)=
②(-18)÷(-3)=
③4(2a-b)-(-3a+b)=
④$6ab×(-\frac{3}{2}a)=$
⑤$(1-\sqrt 5)^2=$
⑥$x^2-x-3=$
⑦*図は動画内参照
⑧3枚の硬貨を同時に投げるとき、少なくとも1枚は表となる確率
⑨この円柱の体積は球の体積の▢倍
ア$\frac{3}{2}$ イ$\frac{4}{3}$ ウ$\frac{5}{4}$ エ$\frac{6}{5}$


1⃣右の度数分布表は、ある中学校のバスケットボール部が行った15試合の練習試合について,1試合ごとの得点の記録を整理したものである。
(1),(2)を求めなさい。
(1) 80点以上100点未満の階級の相対度数
(2) 度数分布表からわかる得点の平均値

2⃣
大輝さんと桃子さんは,町内会の夏祭りでボールすくいを計画している。2人は,
町内会の人から模様入りと単色の2種類のボールが合計500個入っている袋を1つ
受け取った。その人に聞いてみたところ、ボール500個の消費税込みの価格は
2,000円であることがわかった。2人は、袋の中に入っている模様入りボールと
単色ボールの個数を調べる方法について,次のように考えた。1,2に答えなさい
ただし、ボールの大きさは、すべて同じものとする。
「大輝さんの考え」
標本調査を行えばそれぞれのおよその個数がわかる
「桃子さんの考え」
それぞれのボールの1個あたりの価格がわかれば、連立方程式を利用して、それぞれの正確な個数を求めることができる。

①大輝さんがこの袋の中から25個のポールを無作為に抽出したところ,抽出した
ボ一ルのうち模様入りボールは6個だった。はじめに袋の中に入っていた模様入りボールのおよその個数として最も適当なのは、アーエのうちではどれですか。一つ答えなさい。
ア およそ100個
イ およそ120個
ウ およそ140個
工 およそ160個

②桃子さんが調べたところ,消費税込みの価格で模様入りボールは1個7円,単色
ボールは1個3円であることがわかった。(1),(2)に答えなさい。

(1) 模様入りボールをx個,単色ボールをy個として、連立方程式をつくりなさい。

(2)ボール500個のうち、模様入りボールと単色ボールをそれぞれ何個ずつあるかを求めなさい。

3⃣
①変化の割合が正になるのは、ア~エのうちではどれですか。当てはまるものをすべて答えなさい。
ア 関数y=2xで,xの値が0から4まで増加するとき。
イ 関数y=-3x+4で、xの値が1から3まで増加するとき。
ウ 関数$y=\frac{6}{x}$の値が3から6まで増加するとき。
エ 関数$y=-x^2$で、xの値が-3から1まで増加するとき。
②aの値は,次のように求めることができる。$\fbox{ (1) }$には適当な式を書きなさい。ただし、$\fbox{ (2) }$は答えを求めるまでの過程も書きなさい。

関数$y=ax^2$について,x =- 2のとき,y=4aである。
また、x=4のとき、y=$\fbox{ (1) }$である。
よって,変化の割合について,$\fbox{ (2) }$

③点Cの座標は(▢、0)である。

④点Aからy軸にひいた垂線とy軸との交点をHとする。台形OHACを,直線OHを回転の軸として1回転させてできる立体の体積は$\fbox{ (1) }$㎤であり、表面積は$\fbox{ (2) }$㎠である。ただし,原点Oから点(1,0)までの距離,原点Oから点(0,1)までの距離をそれぞれ1cmとする。

4⃣
太郎さんは、道路側が斜めに切り取られたような建物を見て、興味をもち調べると、その建物は周辺の日当たりなどを確保するためのきまりにもとづいて建てられていることがわかった。そのきまりについて,次のように、真横から見た模式図をかいてまとめた。①~④に答えなさい。

太郎さんのまとめ1
直線lを平らな地面とみなす。また,2点O,Aは直線l上の点で、線分OAを道路とし,
線分OAの長さを道路の幅とみなす。

きまりⅠ
建物は,道路側に(直線ABから)はみ出さないようにする。
あわせて建物は,図1で,OA:AB=4:5となる直線OBを越えてはいけない。

きまりⅡ
建物は、きまりⅠにもとづいて建てなければならない。ただし、道路の幅が12m以上のときは、図2で,直線OBを越えてもよいが、OC=1.25×OA、OC:CD=2:3となる直線ODを越えてはいけない。これは、直線CDより道路から遠い部分に適用される。

【図1,2の説明】
・色のついた図形を建物とみなし,点Bは図1と図2の,点D、E、Hは図2の建物とみなす図形の周上の点
・点C,Gは、半直線OA上の点
・l⊥AB、 l⊥CD、l⊥GE
・点Eは、点Dを通り、直線lに平行な直線と直線OBの交点
・点Fは、直線ABと直線DEの交点
・点Hは、直線OEと直線CDの交点

① 点Aを通り,直線をに垂直な直線を定規とコンバスを使って作図しなさい。作図に使った線は残しておきなさい。

②図1において、OA=12mのとき、線分ABの長さを求めなさい。

③太郎さんは、道路の幅が12mできまりⅡが適用されたとき,図2をもとに図3を
作成し、点C,Dの特徴について考えた。$\fbox{ (1) }$、$\fbox{ (2) }$には適当な数または式を書きなさい。また、$\fbox{ (3) }$には点Eのx座標を求める過程の続きを書き、を完成させなさい。


図3のように,点Oを原点に,直線lをx軸にしたグラフを考える。
直線OBの式を$y=\frac{5}{4}x$とすると、
直線ODの式は$y=\fbox{ (1) }$である。
OA=12のとき、OC=1.25×OA=15となるので,点Aのx座標を12とすると、点C、Dのx座標はともに15である。
このとき、点Eのx座標を求める。
点D、Eのy座標はともに$\fbox{ (2) }$である。また、$\fbox{ (3) }$である。
よって線分ACと線分CGの長さが等しいので、AC:CG=1:1である。
つまり、点Cは線分AGの中点であり、点Dは線分FEの中点である。

④太郎さんは、③の図3をもとに図4を作成し、建物Xと道路をはさんで向かいあう建物Yの壁面にできる建物Xの影について考えた。▢に適当な数を書き、を完成させなさい。


図4について、点Pは,点Fを通り直線ODに平行な直線とy軸との交点とする。
道路の幅(線分OAの長さ)が12mのとき,きまりⅠ,Ⅱの制限いっぱいに建てられた建物Xの影の部分が,ちょうど道路の幅と同じになるときを考える。南中高度で調べると,春分·秋分の日のころだとわかった。太陽の光線は平行に進むと考えることができるので,直線ODと直線PFを太陽の光線とみなすことにする。
このとき,線分OPはきまりⅠが適用されていない場合に,建物Yの壁面にできる影
の部分とみなすことができる。
よって,きまりⅠが適用されていない場合,線分OPの長さが▢mであることより、建物Yの壁面にできる影の部分は、この高さまであるとわかる。
きまりによって,建物Yの日当たりがより確保されていることがわかった。

5⃣次の図のように、∠DABが角の平行四近形ABCDについて、線分ADを2:1に分ける点をEとする。線分A,Bの延長線上に、点Aとは異なる点FをAB=BFとなるようにとり、点Bと点F、点Eと点Fをそれぞれ結ぶ。線分EFと線分BCの交点をG、線分EFと平行四辺形ABCDの対角線BDの交点をHとする。また、点Hから線分ADにひいた垂線と線分ADとの交点をPとする。
①,②は指示に従って答えなさい。③は▢に適当な数を書きなさい。

①四角形が平行四辺形にならない場合があるのは、ア~エのうちではどれですか。一つ答えなさい。
ア 1組の向かい合う辺が長さが等しくて平行であるとき。
イ 2本の対角線が、それぞれの中点で交わるとき。
ウ 2本の対角線が、長をが等しくて垂直に交わるとき。
工 2組の向かいあう角が、それぞれ等しいとき。

②BG=EDは、次のように導くことができる。$y=\fbox{ (1) }$には、△AFE∽△BFGの証明の過程を書きなさい。また,$y=\fbox{ (2) }$には適当な教を書きなさい。

△AFEと△BFGにおいて,$\fbox{ (1) }$

△AFE∽△BFGである。
よって、この結果より,BG=$\fbox{ (2) }$AE となるので、BG=ED である。

③ AD=15cm,DH=EH,△BFGの面積が20$\sqrt 6$㎠のとき、線分HPの長さは$\fbox{ (1) }$㎝ であり、線分ABの長さは$\fbox{ (2) }$㎝である。

*図は動画内参照
この動画を見る 

中学1年生で勉強する資料の分析を1本の動画にまとめてみました【新学習指導要領】

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
資料の分析と活用のまとめ

右の表1を(①)表という。 ※表は動画参照
資料を整理するために用いる区間を(②)
区間の幅を(③)、(➁)の真ん中の値を(④)、その(➁)に入っている資料の個数を(⑤)といい
その(➁)に入っている資料の個数を(⑤)といい、(⑤)の合計に対する割合を(⑥)という。

また、表2のような柱状グラフを(⑦)といい、
それぞれの長方形の上の辺の中点を結んだものを(⑧)線という。
この動画を見る 

中学2年生で勉強する確率を1本の動画にまとめてみました。

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
確率のまとめ

ポイント
確率とは(①)が起こると( )される( )を表したもの

〈定期テストではよく出るトランプ〉
Q.ジョーカーを除く52枚のカードから1枚ひくとき、次の確率を求めなさい。

②スペードのカードをひく確率
③ハートかつ奇数のカードをひく確率
この動画を見る 

【中学数学】四角形の性質まとめ~ゲーム感覚で覚えようぜ~

アイキャッチ画像
単元: #中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
四角形の性質まとめ動画です
この動画を見る 

【高校受験対策/数学】死守52

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52

①$8+3\times(-2)$を計算しなさい。

➁$9a+1-2(3a-2)$を計算しなさい。

③$8x^2y \times(-6xy)$を計算しなさい。

④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。

⑤二次方程式$x^2+x-6=0$を解きなさい。

⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。

⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。

⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。

⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。

⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。

この動画を見る 

【中学数学】漫才で覚える2次方程式の解の公式【漫才】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
漫才で覚える2次方程式の解の公式
この動画を見る 

【高校受験対策/数学】図形35

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形35

Q.
右の図のように、$AE=10cm$、$EF=8cm$、$FG=6cm$の直方体$ABCD-EFGH$がある。
線分$EG$と線分$FH$の交点を$P$とし、 線分$CE$、$CP$の中点をそれぞれ$M$、$N$とする。
このとき、次の問1~問に答えなさい。

①線分$EG$と線分$EC$の長さを、それぞれ答えなさい。

② 線分$MN$の長さを求めなさい。

③$△ENM$の面積を求めなさい。

④三角すい$BENM$の体積を求めなさい。
この動画を見る 

【高校受験対策/数学】難解死守4

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守4

①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$

➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$

③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。

④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。

⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。

⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。
この動画を見る 

【高校受験対策/数学】死守51

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守51

①$-7+9-8$を計算しなさい。

➁$8x^2\div4x$を計算しなさい。

③連立方程式を解きなさい。
$2x-y=1$
$-3x+y=2$

④$\frac{4}{\sqrt{2}}+\sqrt{18}$を計算しなさい。

⑤正五角形の1つの内角の大きさは何度ですか。

⑥3枚の硬貨を同時に投げるとき、1枚が表で2枚が裏になる確率を求めなさい。

⑦$x$は$y$に反比例し、$x=-4$のとき$y=5$です。$y$を$x$の式で表しなさい。

⑧半径$\frac{1}{3}cm$の球の表面積は何cmですか。ただし、円周率$\pi$はとする。

⑨右の表は、ある中学校のソフトテニス部の10人の部員A~J のうち、
欠席したCさん以外の9人について、握力を測定し小数第1位を四捨五入した記録を示したものである。
後日、Cさんの握力を測定し、小数第1位を四捨五入した記録をこの表に加えたところ、
10人の記録の中央値は、Cさんの記録を加える前の9人の記録の中央値から1kg増加しました。
表に加えたCさんの記録は何kgですか。
この動画を見る 

【高校受験対策/数学】関数48

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数 48

Q
右の図のように、関数$y=x^2$のグラフ上に2点、$A,B$が、
関数$y=ax^2$のグラフ上に2点、$C,D$があり、
点$A$と点$D$の$x$座標は$3$、点$B$と点$C$の$x$座標は$-2$である。
点$A$と点$B$、点$B$と点$C$、点$C$と点$D$、点$D$と点$A$をそれぞれ結ぶ。
このとき、次の各問いに答えなさい。ただし$a \lt 0$とする。

①点$A$の座標を求めなさい。

②2点$A,B$を通る直線の式を求めなさい。

③四角形$ABCD$の面積が$50$であるとき、$a$の値を求めなさい。

この動画を見る 

【高校受験対策/数学】死守50

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守50

①$-3-(-5)$を計算しなさい。

②$(-2) \times 6$を計算しなさい。

③$2(a-2b)-(a+b)$を計算しなさい。

④$90a^2b \div 30$を計算しなさい。

⑤$(\sqrt{3}+2)(\sqrt{3}-2)$を計算しなさい。

⑥方程式$x^2+3x-1=0$を解きなさい。

⑦2点$(1,1)$、$(3,-3)$を通る直線の式を求めなさい。

⑧右図のような立方体がある。
面ABCD上の線分ACと面BFGC上の線分BGの長さに ついて、
正しく述べられている文はア~エのうちではどれですか。一つ答えなさい。

ア 線分ACの方が長い
イ 線分ACと線分BGの長さは等しい
ウ 線分BGの方が長い
エ 問題の条件だけでは、どちらが長いか決まらない

⑨同じ大きさの玉がたくさん入っている袋がある。
この袋の中から30個の玉を取り出し、その全部に印をつけて戻した。
その後、袋の中をよくかき混ぜ50個の玉を無作為に抽出すると、印をつけた玉が5個含まれていた。
はじめに袋の中に入っていた玉の個数はおよそ何個か答えなさい。

⑩右図のような、AB=4cm、BC=3cmの長形ABCD がある。
この長方形を、辺DCを軸として1回転させてできる立体の体積を求めなさい。
この動画を見る 
PAGE TOP