数学検定・数学甲子園・数学オリンピック等
ギリシア 数学オリンピック 簡単
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3・2^x+4-n^2$
$x,n$は自然数とする.$x$の値を求めよ.
この動画を見る
$3・2^x+4-n^2$
$x,n$は自然数とする.$x$の値を求めよ.
数学オリンピック トルコ 標準レベル
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$は整数であり,$P$は素数である.
$x^2-3xy+P^2y^2=12P$
$(x,y,P)$の組をすべて求めよ.
数学オリンピックトルコ過去問
この動画を見る
$x,y$は整数であり,$P$は素数である.
$x^2-3xy+P^2y^2=12P$
$(x,y,P)$の組をすべて求めよ.
数学オリンピックトルコ過去問
数学オリンピック ベラルーシ 整数
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
この動画を見る
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
アルゼンチンの数学オリンピック
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$p^5+p^3+2=q^2-q$
$(p,q)$をすべて求めよ.
この動画を見る
$p,q$は素数であり,$p^5+p^3+2=q^2-q$
$(p,q)$をすべて求めよ.
数学オリンピック予選問題
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_i(i=1$~$2n)$は有理数である.
$x^{2n}+a_1 x^{2n-1}+a_2 x^{2n-2}+・・・・+a_{2n-1}x+a_{2n}$
$=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.$a_1$の値を求めよ.
数学オリンピック過去問
この動画を見る
$a_i(i=1$~$2n)$は有理数である.
$x^{2n}+a_1 x^{2n-1}+a_2 x^{2n-2}+・・・・+a_{2n-1}x+a_{2n}$
$=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.$a_1$の値を求めよ.
数学オリンピック過去問
数学オリンピック予選 合同式の「割り算‼️」
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.
数学オリンピック過去問
この動画を見る
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.
数学オリンピック過去問
数学オリンピック 整数問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る
$1111^{2018}$を$11111$で割った余りを求めよ.
20年5月数学検定1級1次試験(微分)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
この動画を見る
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
20年5月数学検定1級1次試験(四面体の体積)
単元:
#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.
$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$
20年5月数学検定1級1次試験(四面体の体積)過去問
この動画を見る
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.
$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$
20年5月数学検定1級1次試験(四面体の体積)過去問
20年5月数学検定1級1次試験(三角関数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
20年5月数学検定1級1次試験(合同式)
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.
20年5月数学検定1級1次試験(合同式)過去問
この動画を見る
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.
20年5月数学検定1級1次試験(合同式)過去問
20年5月数検準1級1次試験(楕円)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
この動画を見る
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
20年5月数検準1級1次試験(極限)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
20年5月数学検定準1級1次試験(複素数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
20年5月数学検定準1級1次試験(円の方程式)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
この動画を見る
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
20年5月数学検定準1級1次試験(積分)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
この動画を見る
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
20年5月数学検定準1級1次試験(三角関数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
この動画を見る
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
20年5月数学検定準1級1次試験(数列)
単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
この動画を見る
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
東大卒の僕が実際にやっていた数学の勉強法【結局解法暗記って何?】
約数の総積 数学オリンピック予選
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.
数学オリンピック過去問
この動画を見る
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.
数学オリンピック過去問
数学オリンピック予選 整数問題
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
この動画を見る
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
数学オリンピック予選
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
この動画を見る
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
数学検定について~受ける意味ある?傾向と対策は?~全国模試1位の勉強法【篠原好】
単元:
#数学検定・数学甲子園・数学オリンピック等#数学検定#その他#勉強法
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受ける意味ある?傾向と対策は?
「数学検定」についてお話しています。
この動画を見る
受ける意味ある?傾向と対策は?
「数学検定」についてお話しています。
数検1級 ルートの中にℹ︎
単元:
#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$
外側の平方根は実部が正
この動画を見る
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$
外側の平方根は実部が正
三乗根の外し方 数検1級向け計算練習
単元:
#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }$の値を求めよ
この動画を見る
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }$の値を求めよ
数学オリンピック予選 整数問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
この動画を見る
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
数学オリンピック 予選の簡単な問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数
出典:数学オリンピック 予選問題
この動画を見る
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数
出典:数学オリンピック 予選問題
数学オリンピック予選問題 超易問
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#ユークリッド互除法と不定方程式・N進法#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d,e,f,g$は異なる自然数で1~7のいずれか。
$a \times b \times c \times d+e \times f \times g$が素数となるすべてを求めよ
出典:数学オリンピック 予選問題
この動画を見る
$a,b,c,d,e,f,g$は異なる自然数で1~7のいずれか。
$a \times b \times c \times d+e \times f \times g$が素数となるすべてを求めよ
出典:数学オリンピック 予選問題
場合の数 数学オリンピック予選
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)
出典:数学オリンピック 予選問題
この動画を見る
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)
出典:数学オリンピック 予選問題
数検Ⅰ級レベル 東工大9割男 栗崎
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定1級#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
極限値
$\displaystyle \lim_{ x \to \infty }${$\sqrt{ x^2+3x-1 }- \sqrt[ 3 ]{ x^3+x^2-1 }$}
この動画を見る
極限値
$\displaystyle \lim_{ x \to \infty }${$\sqrt{ x^2+3x-1 }- \sqrt[ 3 ]{ x^3+x^2-1 }$}