4S数学
4S数学
【数C】【空間ベクトル】大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。
この動画を見る
大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。
【数C】【空間ベクトル】△ABCについて,cosAの値と面積Sを求めよ(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
この動画を見る
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
【数C】【空間ベクトル】平行六面体ABCD-EFGHにおいて、AC=a、AF=AF=b、AH=cとするとき、AGをa,b,cを用いて表せ

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行六面体 $\mathrm{ABCD}$-$\mathrm{EFGH}$において、
$\overrightarrow{\mathrm{AC}} = \vec{a},\overrightarrow{\mathrm{AF}} = \vec{b}, \overrightarrow{\mathrm{AH}} = \vec{c}$ とするとき、
$\overrightarrow{\mathrm{AG}} $ を $\vec{a}, \vec{b},\vec{c}$ を用いて表せ。
この動画を見る
平行六面体 $\mathrm{ABCD}$-$\mathrm{EFGH}$において、
$\overrightarrow{\mathrm{AC}} = \vec{a},\overrightarrow{\mathrm{AF}} = \vec{b}, \overrightarrow{\mathrm{AH}} = \vec{c}$ とするとき、
$\overrightarrow{\mathrm{AG}} $ を $\vec{a}, \vec{b},\vec{c}$ を用いて表せ。
【数Ⅲ】【積分とその応用】シュワルツの不等式{∫[a→b]f(x)g(x)dx}²≦(∫[a→b]{f(x)}²dx)(∫[a→b]{g(x)}²dx) を利用して、次の不等式が成り立つことを証明せよ

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
この動画を見る
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1)lim[n→∞]{√(n+1)+√(n+2)+……+√(2n)}/{1+√2+√3+……+√n}他1問

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよ。
(1) $\displaystyle \lim_{ n \to 0 }\dfrac{\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+…+\sqrt{2n}}{1+\sqrt{2}+\sqrt{3}+\sqrt{4}+…+\sqrt{n}}$
(2) $\displaystyle \lim_{ n \to 0 }\log{\sqrt[ n ]{ n+1 }}+\log{\sqrt[ n ]{ n+2 }}+\log{\sqrt[ n ]{ n+3 }}+…+\log{\sqrt[ n ]{ 2n }}-\log n$
この動画を見る
次の極限値を求めよ。
(1) $\displaystyle \lim_{ n \to 0 }\dfrac{\sqrt{n+1}+\sqrt{n+2}+\sqrt{n+3}+…+\sqrt{2n}}{1+\sqrt{2}+\sqrt{3}+\sqrt{4}+…+\sqrt{n}}$
(2) $\displaystyle \lim_{ n \to 0 }\log{\sqrt[ n ]{ n+1 }}+\log{\sqrt[ n ]{ n+2 }}+\log{\sqrt[ n ]{ n+3 }}+…+\log{\sqrt[ n ]{ 2n }}-\log n$
【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1) lim[x→0]1/x∫[0→x]1/(1+cost)dt(2) lim[x→0]∫[0→x](1+sint)²/xdt他1問

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
この動画を見る
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
【数A】【数と式】整数xが5個存在するようなaの値の範囲を求めよ。

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$7x-5 > 13-2x$
$x+a \geqq 3x+5$
整数$x$が5個存在するような$a$の値の範囲を求めよ。
この動画を見る
$7x-5 > 13-2x$
$x+a \geqq 3x+5$
整数$x$が5個存在するような$a$の値の範囲を求めよ。
【数A】【数と式】次のうち、小数点以下が√7 と同じになるのはどれ?

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のうち、小数点以下が$\sqrt{7}$と同じになるのはどれ?
$\sqrt{11-4\sqrt{7}} $
$\sqrt{10-\sqrt{84}} $
$\sqrt{16-3\sqrt{28}} $
この動画を見る
次のうち、小数点以下が$\sqrt{7}$と同じになるのはどれ?
$\sqrt{11-4\sqrt{7}} $
$\sqrt{10-\sqrt{84}} $
$\sqrt{16-3\sqrt{28}} $
【数A】【数と式】つぎの等式のどこが間違えっているでしょう。√(4-2√3)=√(1+3-2√1・3)=√(√1-√3)²=√1-√3=1-√3

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の二重根号を外しなさい
$\sqrt{4-2\sqrt{3}} $
※解法に間違いがあるので
見つけましょう!
この動画を見る
次の二重根号を外しなさい
$\sqrt{4-2\sqrt{3}} $
※解法に間違いがあるので
見つけましょう!
【数A】【数と式】二重根号を外した形を求めよ(1) √(4+√7)(2) √(7-√33)(3) √(10+5√3)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{4+\sqrt{7}} $
(2) $\sqrt{7-\sqrt{33}} $
(3) $\sqrt{10+5\sqrt{3}} $
この動画を見る
二重根号を外した形を求めよ
(1) $\sqrt{4+\sqrt{7}} $
(2) $\sqrt{7-\sqrt{33}} $
(3) $\sqrt{10+5\sqrt{3}} $
【数A】【数と式】二重根号を外した形を求めよ(1) √(5+√24) (2) √(11+4√6)(3) √(12-8√2)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{5+\sqrt{24}} $
(2) $\sqrt{11+4\sqrt{6}} $
(3) $\sqrt{12-8\sqrt{2}} $
この動画を見る
二重根号を外した形を求めよ
(1) $\sqrt{5+\sqrt{24}} $
(2) $\sqrt{11+4\sqrt{6}} $
(3) $\sqrt{12-8\sqrt{2}} $
【数A】【数と式】二重根号を外した形を求めよ(1) √(4-2√3)(2) √(17-2√42)(3) √(9-2√20)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{4-2\sqrt{3}} $
(2) $\sqrt{17-2\sqrt{42}} $
(3) $\sqrt{9-2\sqrt{20}} $
この動画を見る
二重根号を外した形を求めよ
(1) $\sqrt{4-2\sqrt{3}} $
(2) $\sqrt{17-2\sqrt{42}} $
(3) $\sqrt{9-2\sqrt{20}} $
【数A】【数と式】(1) a³+b³+c³-3abc を因数分解せよ(2) (1)の結果を利用して x³+y³-3xy+1 を因数分解せよ

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $a^3+b^3+c^3-3abc$ を因数分解せよ
(2) (1)の結果を利用して $x^3+y^3-3xy+1$ を因数分解せよ
この動画を見る
(1) $a^3+b^3+c^3-3abc$ を因数分解せよ
(2) (1)の結果を利用して $x^3+y^3-3xy+1$ を因数分解せよ
【数A】【数と式】(1) (x-1)(x-3)(x-5)(x-7)+15 (2) (x+1)(x-2)(x+3)(x-6)+8x²

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $(x-1)(x-3)(x-5)(x-7)+15$
(2) $(x+1)(x-2)(x+3)(x-6)+8x^2$
この動画を見る
(1) $(x-1)(x-3)(x-5)(x-7)+15$
(2) $(x+1)(x-2)(x+3)(x-6)+8x^2$
【数A】【数と式】(1) (a+b+c)(a²+b²+c²-ab-bc-ca)(2) (x+y-1)(x²-xy+y²+x+y+1)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
(2) $(x+y-1)(x^2-xy+y^2+x+y+1)$
この動画を見る
(1) $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
(2) $(x+y-1)(x^2-xy+y^2+x+y+1)$
【数A】【数と式】(1)(x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)(2) (x+y+1)(x+y-1)(x-y+1)(x-y-1)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を展開しなさい
(1). (x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)
(2). (x+y+1)(x+y-1)(x-y+1)(x-y-1)
この動画を見る
次の式を展開しなさい
(1). (x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)
(2). (x+y+1)(x+y-1)(x-y+1)(x-y-1)
【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
この動画を見る
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
【数C】【ベクトルの内積】x,yはベクトルを表す。|x-y|=1,|2y-x|=2,(x-y)⊥(2y-x)とする(1)x,yの大きさを求めよ(2)xとyのなす角をθとするとき,cosθの値を求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|\vec{x}-\vec{y}| = 1 , |2 \vec{y} - \vec{x}| = 2 , (\vec{x} - \vec{y}) \perp (2 \vec{y} - \vec{x})$ とする。
(1) $\vec{x} , \vec{y}$ の大きさを求めよ。
(2) $\vec{x}$ と $\vec{y}$ のなす角を $\theta$ とするとき、$\cos \theta$ の値を求めよ。
この動画を見る
$|\vec{x}-\vec{y}| = 1 , |2 \vec{y} - \vec{x}| = 2 , (\vec{x} - \vec{y}) \perp (2 \vec{y} - \vec{x})$ とする。
(1) $\vec{x} , \vec{y}$ の大きさを求めよ。
(2) $\vec{x}$ と $\vec{y}$ のなす角を $\theta$ とするとき、$\cos \theta$ の値を求めよ。
【数Ⅲ】【関数と極限】次の条件によって定められる数列a₁=8、an+₁=3an+4/an+3(1)bn=1/an-2とおくとき、{bn}の一般項を求めよ。(2){an}の一般項とその極限を求めよ

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$について、次の問いに答えよ。
$a_1=8$、$a_{n+1}=\dfrac{3a_n+4}{a_n+3}$
(1) $b_{n}=\dfrac{1}{a_n-2} $とおくとき、$b_n$の一般項を求めよ。
(2) $a_n$の一般項とその極限を求めよ。
この動画を見る
次の条件によって定められる数列$a_n$について、次の問いに答えよ。
$a_1=8$、$a_{n+1}=\dfrac{3a_n+4}{a_n+3}$
(1) $b_{n}=\dfrac{1}{a_n-2} $とおくとき、$b_n$の一般項を求めよ。
(2) $a_n$の一般項とその極限を求めよ。
【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の一般項を求めよ。また、{an}の極限を求めよ。a₁=1/2、an+₁=an/2+an

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列$a_n$の一般項を求めよ。
また、$a_n$の極限を求めよ。
$a_1=\dfrac{1}{2}$、$a_{n+1}=\dfrac{a_n}{2+a_n}$
この動画を見る
次の条件によって定められる
数列$a_n$の一般項を求めよ。
また、$a_n$の極限を求めよ。
$a_1=\dfrac{1}{2}$、$a_{n+1}=\dfrac{a_n}{2+a_n}$
【数Ⅲ】【関数と極限】数列{(x/x²+2p)^n}がすべての実数xに対して収束するとき、pの値の範囲を求めよ。ただし、p>0とする。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列{$\dfrac{x}{x²+2p}^n$}が
すべての実数xに対して収束するとき、pの値の範囲を求めよ。
ただし、p>0とする。
この動画を見る
数列{$\dfrac{x}{x²+2p}^n$}が
すべての実数xに対して収束するとき、pの値の範囲を求めよ。
ただし、p>0とする。
【数Ⅲ】【関数と極限】rは定数とする。次の数列の極限を調べよ。(1) r>0のとき{1/2+r^n}(2) r≠±1のとき{r^n+2/r^n-1}(3) r≠0のとき{1/r^n}

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
rは定数とする。次の数列の極限を調べよ。
(1) r>0のとき{$\dfrac{1}{2+r^n}$}
(2) r≠±1のとき{$\dfrac{r^n+2}{r^n-1}$}
(3) r≠0のとき{$\dfrac{1}{r^n}$}
この動画を見る
rは定数とする。次の数列の極限を調べよ。
(1) r>0のとき{$\dfrac{1}{2+r^n}$}
(2) r≠±1のとき{$\dfrac{r^n+2}{r^n-1}$}
(3) r≠0のとき{$\dfrac{1}{r^n}$}
【数Ⅲ】【関数と極限】次の数列が収束するような実数xの値の範囲を極限を求めよ。(1) {(x/1+2x)^n}(2) {x(x²-5x+5)^n-1}

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の数列が収束するような実数xの値の範囲を極限を求めよ。
(1) { $\dfrac{x}{1+2x}^n$ }
(2) { $x(x²-5x+5)^{n-1}$ }
この動画を見る
次の数列が収束するような実数xの値の範囲を極限を求めよ。
(1) { $\dfrac{x}{1+2x}^n$ }
(2) { $x(x²-5x+5)^{n-1}$ }
【数B】【数列】初項4、公差5の等差数列{a_n}と、初項8,公差7の等差数列{b_n}について、これら2つの数列に共通に含まれている項を、順に並べてできる数列{c_n}の一般項を求めよ。

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
初項4、公差5の等差数列${a_n}$と、初項8,公差7の等差数列${b_n}$について、これら2つの数列に共通に含まれている項を、順に並べてできる数列${c_n}$の一般項を求めよ。
この動画を見る
初項4、公差5の等差数列${a_n}$と、初項8,公差7の等差数列${b_n}$について、これら2つの数列に共通に含まれている項を、順に並べてできる数列${c_n}$の一般項を求めよ。
【数B】【数列】初項a、公差dである等差数列の初項から第n項までの和をSnとする。m≠nであって、Sm=Snならば、Sn+m=0であることを証明せよ。

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
初項a、公差dである等差数列の初項から第n項までの和をSnとする。m≠nであって、$S_m=S_n$ならば、$S_{n+m}$=0であることを証明せよ。
この動画を見る
初項a、公差dである等差数列の初項から第n項までの和をSnとする。m≠nであって、$S_m=S_n$ならば、$S_{n+m}$=0であることを証明せよ。
【数B】【数列】a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。
この動画を見る
a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。
【数Ⅲ】【関数と極限】初項1、公比1/7の無限等比級数の和Sと、初項から第n項までの部分和Snとの差が、初めて1/1000より小さくなるようなnの値を求めよ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
初項1、公比1/7の無限等比級数の和Sと、初項から第n項までの部分和Snとの差が、
初めて1/1000より小さくなるようなnの値を求めよ。
この動画を見る
初項1、公比1/7の無限等比級数の和Sと、初項から第n項までの部分和Snとの差が、
初めて1/1000より小さくなるようなnの値を求めよ。
【数Ⅲ】【関数と極限】第2項が3である無限等比級数が収束し、その和が-4であるとき、初項と公比を求めよ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
第2項が3である無限等比級数が収束し、その和が-4であるとき、初項と公比を求めよ。
この動画を見る
第2項が3である無限等比級数が収束し、その和が-4であるとき、初項と公比を求めよ。
【数Ⅲ】【関数と極限】a₁=1/35、1/an+₁=1/an +8n+20によって定められる数列{an}について、次の問いに答えよ。(1) anをnの式で表せ。(2) 無限級数Σanの和を求めよ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列 $\{a_n\}$ は以下のように定められる数列について、次の問いに答えよ
$a_1 = \frac{1}{35}$,$\quad \frac{1}{a_{n+1}} = \frac{1}{a_n} + 8n + 20 \quad$ $(n = 1, 2, 3, \ldots)$
(1)$a_n$を$n$ の式で表せ。
(2)無限級数 $\displaystyle \sum_{n=1}^{\infty} a_n$ の和を求めよ。
この動画を見る
数列 $\{a_n\}$ は以下のように定められる数列について、次の問いに答えよ
$a_1 = \frac{1}{35}$,$\quad \frac{1}{a_{n+1}} = \frac{1}{a_n} + 8n + 20 \quad$ $(n = 1, 2, 3, \ldots)$
(1)$a_n$を$n$ の式で表せ。
(2)無限級数 $\displaystyle \sum_{n=1}^{\infty} a_n$ の和を求めよ。
【数Ⅲ】【関数と極限】次の無限級数の収束、発散について調べ、収束する場合は、その和を求めよ。(1) 2 + 2/1+2 + 2/1+2+3 +・・・+ 2/1+2+3+…+n +・・・他

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ,収束する場合はその和を求めよ。
(1)$2+\frac{2}{1+2} + \frac{2}{1+2+3} + \frac{2}{1+2+3+4} + \cdots$
(2)$\frac{1}{3} + \frac{1}{3+5} + \frac{1}{3+5+7} + \cdots + \frac{1}{3+5+7+\cdots+(2n+1)} + \cdots$
この動画を見る
次の無限級数の収束・発散について調べ,収束する場合はその和を求めよ。
(1)$2+\frac{2}{1+2} + \frac{2}{1+2+3} + \frac{2}{1+2+3+4} + \cdots$
(2)$\frac{1}{3} + \frac{1}{3+5} + \frac{1}{3+5+7} + \cdots + \frac{1}{3+5+7+\cdots+(2n+1)} + \cdots$
