福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の数学〜早稲田大学2022年人間科学部第1問(2)〜2次関数のグラフの位置から係数決定

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(2)2次関数$y=ax^2+bx+c$の係数$a,b,c$は次の条件をともに満たすとする。
条件1.$a,b,c$は互いに異なる。
条件2. -3以上5以下の整数である。
この2次関数のグラフが、原点を通り、かつ、頂点が第1象限または第3象限
にあるような$a,b,c$の組は全部で$\boxed{\ \ イ\ \ }$組ある。
2022早稲田大学人間科学部過去問
この動画を見る
${\large\boxed{1}}$(2)2次関数$y=ax^2+bx+c$の係数$a,b,c$は次の条件をともに満たすとする。
条件1.$a,b,c$は互いに異なる。
条件2. -3以上5以下の整数である。
この2次関数のグラフが、原点を通り、かつ、頂点が第1象限または第3象限
にあるような$a,b,c$の組は全部で$\boxed{\ \ イ\ \ }$組ある。
2022早稲田大学人間科学部過去問
福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。
${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$
これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。
2022早稲田大学人間科学部過去問
この動画を見る
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。
${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$
これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。
2022早稲田大学人間科学部過去問
福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。
2022早稲田大学人間科学部過去問
この動画を見る
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。
2022早稲田大学人間科学部過去問
福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

単元:
#数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが$\sqrt3+1$である正八面体の頂点を右図(※動画参照)
のように$P_1,P_2,P_3,P_4,P_5,P_6$とする。$i=1,2,\ldots,6$に対して
$P_i$以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)を$B_i$とする。$B_1$の体積をXとし、$B_1$と
$B_2$の共通部分の体積をYとし、$B_1,B_2,B_3$の共通部分の体積をZ
とする。さらに$B_1,B_2,\ldots,B_n$を合わせて得られる立体の体積を
$V_n\ \ (n=2,3,\ldots,6)$とする。以下の問いに答えよ。
(1)$V_n=aX+bY+cZ$となる整数a,b,cを$n=2,3,6$の場合
について求めよ。
(2)Xの値を求めよ。
(3)$V_2$の値を求めよ。
2022早稲田大学理工学部過去問
この動画を見る
${\large\boxed{4}}$一辺の長さが$\sqrt3+1$である正八面体の頂点を右図(※動画参照)
のように$P_1,P_2,P_3,P_4,P_5,P_6$とする。$i=1,2,\ldots,6$に対して
$P_i$以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)を$B_i$とする。$B_1$の体積をXとし、$B_1$と
$B_2$の共通部分の体積をYとし、$B_1,B_2,B_3$の共通部分の体積をZ
とする。さらに$B_1,B_2,\ldots,B_n$を合わせて得られる立体の体積を
$V_n\ \ (n=2,3,\ldots,6)$とする。以下の問いに答えよ。
(1)$V_n=aX+bY+cZ$となる整数a,b,cを$n=2,3,6$の場合
について求めよ。
(2)Xの値を求めよ。
(3)$V_2$の値を求めよ。
2022早稲田大学理工学部過去問
福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。
2022早稲田大学理工学部過去問
この動画を見る
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。
2022早稲田大学理工学部過去問
福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。
2022早稲田大学理工学部過去問
この動画を見る
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。
2022早稲田大学理工学部過去問
福田の数学〜早稲田大学2022年理工学部第1問〜2つの指数関数に囲まれた部分の面積と回転体の体積

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ f(x)=3e^x-6,g(x)=e^{2x}-4e^x$とおく。
xy平面上の曲線$y=f(x)$をC、曲線$y=g(x)$をDとする。
以下の問いに答えよ。
(1)CとDの概形を一つのxy平面上に描け。
(2)CとDによって囲まれた部分の面積Sを求めよ。
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる
立体の体積Vを求めよ。
2022早稲田大学理工学部過去問
この動画を見る
${\large\boxed{1}}\ f(x)=3e^x-6,g(x)=e^{2x}-4e^x$とおく。
xy平面上の曲線$y=f(x)$をC、曲線$y=g(x)$をDとする。
以下の問いに答えよ。
(1)CとDの概形を一つのxy平面上に描け。
(2)CとDによって囲まれた部分の面積Sを求めよ。
(3)CとDによって囲まれた部分を、x軸の周りに1回転させてできる
立体の体積Vを求めよ。
2022早稲田大学理工学部過去問
福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{5}}$関数$f(x)$を$f(x)=(x+1)(|x-1|-1)+2$で定める。
(1)$y=f(x)$のグラフをかきなさい。
(2)kを実数とする。このとき、方程式$f(x)=k$が異なる3つの実数解
をもつようなkの値の範囲は$\boxed{\ \ ア\ \ }$である。
(3)曲線$y=f(x)$上の点$P(0,f(0))$における接線lの方程式は$y=\boxed{\ \ イ\ \ }$である。
また、曲線$y=f(x)$と直線lは2つの共有点をもつが、点Pとは異なる共有点を
Qとするとき、点Qのx座標は$\boxed{\ \ ウ\ \ }$である。さらに、曲線$y=f(x)$と直線lで
囲まれた図形の面積は$\boxed{\ \ エ\ \ }$である。
(4)関数$F(x)$を$F(x)=\int_0^xf(t)dt$で定める。このとき、$F'(x)=0$を満たすxを
すべて求めると$x=\boxed{\ \ オ\ \ }$である。これより、関数$F(x)$は
$x=\boxed{\ \ カ\ \ }$で最小値$\boxed{\ \ キ\ \ }$をとることがわかる。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{5}}$関数$f(x)$を$f(x)=(x+1)(|x-1|-1)+2$で定める。
(1)$y=f(x)$のグラフをかきなさい。
(2)kを実数とする。このとき、方程式$f(x)=k$が異なる3つの実数解
をもつようなkの値の範囲は$\boxed{\ \ ア\ \ }$である。
(3)曲線$y=f(x)$上の点$P(0,f(0))$における接線lの方程式は$y=\boxed{\ \ イ\ \ }$である。
また、曲線$y=f(x)$と直線lは2つの共有点をもつが、点Pとは異なる共有点を
Qとするとき、点Qのx座標は$\boxed{\ \ ウ\ \ }$である。さらに、曲線$y=f(x)$と直線lで
囲まれた図形の面積は$\boxed{\ \ エ\ \ }$である。
(4)関数$F(x)$を$F(x)=\int_0^xf(t)dt$で定める。このとき、$F'(x)=0$を満たすxを
すべて求めると$x=\boxed{\ \ オ\ \ }$である。これより、関数$F(x)$は
$x=\boxed{\ \ カ\ \ }$で最小値$\boxed{\ \ キ\ \ }$をとることがわかる。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。
2022慶応義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。
2022慶応義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第3問〜平均と分散の変換

単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{3}}$(1)ある学校で100点満点のテストを行うことになった。
まず10人の教員で解いてみたところ、その得点のヒストグラムは
右図(※動画参照)のようになった。ただし、得点は整数値とする。
このデータの平均値は$\boxed{\ \ ア\ \ }$点、中央値は$\boxed{\ \ イ\ \ }$点、
最頻値は$\boxed{\ \ ウ\ \ }$点、分散は$\boxed{\ \ エ\ \ }$点である。
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均
値が$\overline{x}_A$、分散が$s_A^2$、B組の得点の平均値が$\overline{x}_B$、分散が$s_B^2$となった。
ただし、$\overline{x}_A,\overline{x}_B,s_A^2,s_B^2$はいずれも0ではなかった。このとき、B組の各生徒
の得点$x$に対して、正の実数aと実数bを用いて$y=ax+b$と変換し、
yの平均値と分散をA組の平均値と分散に一致させるためには、
$a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }$とすればよい。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{3}}$(1)ある学校で100点満点のテストを行うことになった。
まず10人の教員で解いてみたところ、その得点のヒストグラムは
右図(※動画参照)のようになった。ただし、得点は整数値とする。
このデータの平均値は$\boxed{\ \ ア\ \ }$点、中央値は$\boxed{\ \ イ\ \ }$点、
最頻値は$\boxed{\ \ ウ\ \ }$点、分散は$\boxed{\ \ エ\ \ }$点である。
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均
値が$\overline{x}_A$、分散が$s_A^2$、B組の得点の平均値が$\overline{x}_B$、分散が$s_B^2$となった。
ただし、$\overline{x}_A,\overline{x}_B,s_A^2,s_B^2$はいずれも0ではなかった。このとき、B組の各生徒
の得点$x$に対して、正の実数aと実数bを用いて$y=ax+b$と変換し、
yの平均値と分散をA組の平均値と分散に一致させるためには、
$a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }$とすればよい。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第2問(1)〜円が直線から切り取る弦の長さ

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(1)円$x^2+y^2-2x+6y=0$をCとするとき、
円Cの中心の座標は$\boxed{\ \ ア\ \ }$であり、
半径は$\boxed{\ \ イ\ \ }$である。また、円Cと直線$y=3x-1$の2つの共有点をA,Bとする
とき、線分ABの長さは$\boxed{\ \ ウ\ \ }$であり、線分ABの垂直二等分線の方程式は
$y=\boxed{\ \ エ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{2}}$(1)円$x^2+y^2-2x+6y=0$をCとするとき、
円Cの中心の座標は$\boxed{\ \ ア\ \ }$であり、
半径は$\boxed{\ \ イ\ \ }$である。また、円Cと直線$y=3x-1$の2つの共有点をA,Bとする
とき、線分ABの長さは$\boxed{\ \ ウ\ \ }$であり、線分ABの垂直二等分線の方程式は
$y=\boxed{\ \ エ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第1問(5)〜解と係数の関係と式の値の計算

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(5)iを虚数単位とし、$\alpha=\frac{1-\sqrt3i}{4}$とする。このとき、
$a,b$を実数とする2次方程式$x^2+ax+b=0$の解の1つが$\alpha$であるならば、
$a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }$である。
また、$f(x)=4x^4-3x^3+2x^2$とするとき、$f(\alpha)$の値は$\boxed{\ \ ウ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{1}}$(5)iを虚数単位とし、$\alpha=\frac{1-\sqrt3i}{4}$とする。このとき、
$a,b$を実数とする2次方程式$x^2+ax+b=0$の解の1つが$\alpha$であるならば、
$a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }$である。
また、$f(x)=4x^4-3x^3+2x^2$とするとき、$f(\alpha)$の値は$\boxed{\ \ ウ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第1問(4)〜サイコロの目の最小値が2である確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{1}}$(4)3個のさいころを同時に投げるとき、出た目の最小値が2以上となる確率は
$\boxed{\ \ ア\ \ }$であり、最小値がちょうど2となる確率は$\boxed{\ \ イ\ \ }$である。また、
出た目の最小値が2であったとき、どの2つの目も互いに素である条件付き確率は
$\boxed{\ \ ウ\ \ }$である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)関数$f(\theta)=\cos2\theta+2\cos\theta$が
$0 \leqq \theta \leqq \pi$ の範囲で最小値をとるのは$\theta=\boxed{\ \ ア\ \ }$
のときであり、最大値を取るのは$\theta=\boxed{\ \ イ\ \ }$のときである。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{1}}$(3)関数$f(\theta)=\cos2\theta+2\cos\theta$が
$0 \leqq \theta \leqq \pi$ の範囲で最小値をとるのは$\theta=\boxed{\ \ ア\ \ }$
のときであり、最大値を取るのは$\theta=\boxed{\ \ イ\ \ }$のときである。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第1問(1)〜対数計算

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)$\log_3\sqrt6\ -\log_3\frac{2}{3}+\log_3\sqrt2\ $を有理数で表すと$\boxed{\ \ ア\ \ }$である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{1}}$(1)$\log_3\sqrt6\ -\log_3\frac{2}{3}+\log_3\sqrt2\ $を有理数で表すと$\boxed{\ \ ア\ \ }$である。
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{6}}$ある大学で来学期の授業の形式をどうするかを検討している。
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、
$\textrm{Web}$上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)
$\textrm{Web}$会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)
の3つがあるとする。
また、来学期の新型ウイルスの感染状況については、
急激に拡大している状況(感染状況xと呼ぶことにする)、
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。
来学期の感染状況について、感染状況xである確率を$p_x$、
感染状況yである確率をp_y、感染状況zである確率を$p_z$とすると、
xyz空間において点$p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)$を頂点とする正三角形上の
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さを$l_y$、
(0,0,1)と向かいの辺に下した垂線の長さを$l_z$とする。
(1)このとき$p_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,$
$p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z$が成り立つ。
いま、正三角形上の点$p=(p_x,p_y,p_z)$に対して、上記の評価の期待値を最大にする
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にxという感染状況のラベルをつけ、
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にyという感染状況のラベルをつけ、
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にzという感染状況のラベルをつけることにする。
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、
原点には$\left\{x,y,z\right\}$の3つのラベルがつく。
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る
ラベルについて下記の選択肢から選びなさい。
単一のラベルがつく場合:$\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}$
2つのラベルがつく場合:$\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},$
$\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}$
3つのラベルがつく場合:$\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}$
4つのラベルがつく場合:$\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}$
選択肢:$(1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z$
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{6}}$ある大学で来学期の授業の形式をどうするかを検討している。
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、
$\textrm{Web}$上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)
$\textrm{Web}$会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)
の3つがあるとする。
また、来学期の新型ウイルスの感染状況については、
急激に拡大している状況(感染状況xと呼ぶことにする)、
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。
来学期の感染状況について、感染状況xである確率を$p_x$、
感染状況yである確率をp_y、感染状況zである確率を$p_z$とすると、
xyz空間において点$p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)$を頂点とする正三角形上の
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さを$l_y$、
(0,0,1)と向かいの辺に下した垂線の長さを$l_z$とする。
(1)このとき$p_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,$
$p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z$が成り立つ。
いま、正三角形上の点$p=(p_x,p_y,p_z)$に対して、上記の評価の期待値を最大にする
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にxという感染状況のラベルをつけ、
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にyという感染状況のラベルをつけ、
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にzという感染状況のラベルをつけることにする。
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、
原点には$\left\{x,y,z\right\}$の3つのラベルがつく。
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る
ラベルについて下記の選択肢から選びなさい。
単一のラベルがつく場合:$\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}$
2つのラベルがつく場合:$\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},$
$\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}$
3つのラベルがつく場合:$\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}$
4つのラベルがつく場合:$\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}$
選択肢:$(1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z$
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{4}}$(1)$xyz$空間において$|x|+|y|+|z| \leqq 1$を満たす立体の体積は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
(2)aを実数としたとき、xyz空間において
$|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0$
を満たす立体の体積V(a)は
$(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$のとき、$V(a)=0$,
$(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0$のとき、
$V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},$
$(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},$
$(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxe$d{\ \ ムメ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},$
$(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a$のとき、
$V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}$
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{4}}$(1)$xyz$空間において$|x|+|y|+|z| \leqq 1$を満たす立体の体積は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
(2)aを実数としたとき、xyz空間において
$|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0$
を満たす立体の体積V(a)は
$(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$のとき、$V(a)=0$,
$(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0$のとき、
$V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},$
$(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},$
$(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxe$d{\ \ ムメ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},$
$(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a$のとき、
$V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}$
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{3}}$xy平面上の曲線Cを$y=x^2(x-1)(x+2)$とする。
(1)Cに2点で下から接する直線Lの方程式は
$y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}$である。
(2)CとLが囲む図の斜線部分の面積(※動画参照)は
$\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}$となる。
ただし、次の公式を使ってもかまわない(m,nは正の整数)
$\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{3}}$xy平面上の曲線Cを$y=x^2(x-1)(x+2)$とする。
(1)Cに2点で下から接する直線Lの方程式は
$y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}$である。
(2)CとLが囲む図の斜線部分の面積(※動画参照)は
$\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}$となる。
ただし、次の公式を使ってもかまわない(m,nは正の整数)
$\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年環境情報学部第2問〜三角関数の最大最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ 0 \leqq \theta \leqq \pi $のとき、関数$y=\sin3\theta-3\cos(\theta-\frac{\pi}{6})$の最大値と最小値を求めたい。
(1)$x=\cos(\theta-\frac{\pi}{6})$とおくと、もとの関数は
$y=\boxed{\ \ アイ\ \ }\ x^3+\boxed{\ \ ウエ\ \ }\ x^2+\boxed{\ \ オカ\ \ }\ x+\boxed{\ \ キク\ \ }$
と書き直すことができる。
(2)このことから、もとの関数の最大値は$\theta=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ \pi$のときに
$\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}$
であり、最小値は$\theta=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \pi$のときに
$\boxed{\ \ ナニ\ \ }\sqrt{\boxed{\ \ ヌネ\ \ }}$であることがわかる。
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{2}}\ 0 \leqq \theta \leqq \pi $のとき、関数$y=\sin3\theta-3\cos(\theta-\frac{\pi}{6})$の最大値と最小値を求めたい。
(1)$x=\cos(\theta-\frac{\pi}{6})$とおくと、もとの関数は
$y=\boxed{\ \ アイ\ \ }\ x^3+\boxed{\ \ ウエ\ \ }\ x^2+\boxed{\ \ オカ\ \ }\ x+\boxed{\ \ キク\ \ }$
と書き直すことができる。
(2)このことから、もとの関数の最大値は$\theta=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ \pi$のときに
$\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}$
であり、最小値は$\theta=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \pi$のときに
$\boxed{\ \ ナニ\ \ }\sqrt{\boxed{\ \ ヌネ\ \ }}$であることがわかる。
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{1}}$ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、
授業の開始・終了などを知らせるために鳴らしている。
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間
を表している。例えば、ドミソシという音を1つずつ、
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は$\boxed{\ \ アイウ\ \ }$通り。
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)
とした場合、
チャイムの種類は合わせて$\boxed{\ \ エオカ\ \ }$通りになる。
ただし、連続する音以外は高々1回までしか鳴らすことはできず、
それらは連続する音とは異ならなければならないものとする。
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、
可能なチャイムの種類は合わせて$\boxed{\ \ キクケ\ \ }$通りになる。
2022慶應義塾大学環境情報学部過去問
この動画を見る
${\large\boxed{1}}$ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、
授業の開始・終了などを知らせるために鳴らしている。
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間
を表している。例えば、ドミソシという音を1つずつ、
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は$\boxed{\ \ アイウ\ \ }$通り。
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)
とした場合、
チャイムの種類は合わせて$\boxed{\ \ エオカ\ \ }$通りになる。
ただし、連続する音以外は高々1回までしか鳴らすことはできず、
それらは連続する音とは異ならなければならないものとする。
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、
可能なチャイムの種類は合わせて$\boxed{\ \ キクケ\ \ }$通りになる。
2022慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{6}}$新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円で
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もし$C \lt 90$
であれば、飲食店は要請に応じず、超過利益は0万円とする。
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円
$(D \geqq C)$であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の
節約分は0万円とする。
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体
の補償金の節約分が最も大きくなるのは$C=\boxed{\ \ アイウ\ \ }$万円の場合である。
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの
とする。また、ここでは自治体が支払うことができる補償金の上限については、
125万円か150万円か175万円のどれかに定まっているが公表されておらず、
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である
確率が\frac{2}{5}であると予想しているものとする。
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店
の超過利益(の期待値)は$\boxed{\ \ エオカ\ \ }$万円となる。
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請
の際に自治体に提示したとすると
$(\textrm{a})$飲食店の超過利益(の期待値)は$\boxed{\ \ キクケ\ \ }$万円であり、
$(\textrm{b})$自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は
$\boxed{\ \ コサシ\ \ }$万円。
$(\textrm{c})$自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は
$\boxed{\ \ スセソ\ \ }$万円。
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{6}}$新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円で
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もし$C \lt 90$
であれば、飲食店は要請に応じず、超過利益は0万円とする。
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円
$(D \geqq C)$であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の
節約分は0万円とする。
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体
の補償金の節約分が最も大きくなるのは$C=\boxed{\ \ アイウ\ \ }$万円の場合である。
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの
とする。また、ここでは自治体が支払うことができる補償金の上限については、
125万円か150万円か175万円のどれかに定まっているが公表されておらず、
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である
確率が\frac{2}{5}であると予想しているものとする。
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店
の超過利益(の期待値)は$\boxed{\ \ エオカ\ \ }$万円となる。
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請
の際に自治体に提示したとすると
$(\textrm{a})$飲食店の超過利益(の期待値)は$\boxed{\ \ キクケ\ \ }$万円であり、
$(\textrm{b})$自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は
$\boxed{\ \ コサシ\ \ }$万円。
$(\textrm{c})$自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は
$\boxed{\ \ スセソ\ \ }$万円。
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第5問〜等脚台形の外接円の中心の位置ベクトル

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{5}}$いま、ADを下底、BCを上底とする台形ABCDにおいて、$\angle BAD=\angle CDA=60°,$
$|\overrightarrow{ AB }|=2,|\overrightarrow{ BC }|=1$となっている。
(1)$|\overrightarrow{ BD }|=\sqrt{\boxed{\ \ アイ\ \ }}$であり、台形ABCDの外接円の半径は$\frac{\sqrt{\boxed{\ \ ウエ\ \ }}}{\boxed{\ \ オカ\ \ }}$である。
(2)外接円の中心をOとするとき、内積$\overrightarrow{ AB }・\overrightarrow{ AO }=\boxed{\ \ キク\ \ },\overrightarrow{ AD }・\overrightarrow{ AO }=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
(3)$\overrightarrow{ AO }=\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ \overrightarrow{ AB }+\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \overrightarrow{ AD }$である。
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{5}}$いま、ADを下底、BCを上底とする台形ABCDにおいて、$\angle BAD=\angle CDA=60°,$
$|\overrightarrow{ AB }|=2,|\overrightarrow{ BC }|=1$となっている。
(1)$|\overrightarrow{ BD }|=\sqrt{\boxed{\ \ アイ\ \ }}$であり、台形ABCDの外接円の半径は$\frac{\sqrt{\boxed{\ \ ウエ\ \ }}}{\boxed{\ \ オカ\ \ }}$である。
(2)外接円の中心をOとするとき、内積$\overrightarrow{ AB }・\overrightarrow{ AO }=\boxed{\ \ キク\ \ },\overrightarrow{ AD }・\overrightarrow{ AO }=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
(3)$\overrightarrow{ AO }=\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ \overrightarrow{ AB }+\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \overrightarrow{ AD }$である。
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は
それぞれ D, F, C, J と重なっているため図中には表示していない)
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって
いるため図中には表示していない)
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある
Jが重なる点をMとする。
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を
Nとする。
(10)折るのをやめる。
このとき、
$BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },$
$\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}$
ここで、$\triangle JKM$の面積を$S_1,\triangle JMN$の面積を$S_2$とすると
$\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}$
となる。
※(1)~(10)の画像は動画参照
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{4}}$一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は
それぞれ D, F, C, J と重なっているため図中には表示していない)
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって
いるため図中には表示していない)
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある
Jが重なる点をMとする。
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を
Nとする。
(10)折るのをやめる。
このとき、
$BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },$
$\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}$
ここで、$\triangle JKM$の面積を$S_1,\triangle JMN$の面積を$S_2$とすると
$\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}$
となる。
※(1)~(10)の画像は動画参照
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると
$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると
$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。
例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。
例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$実数xに対して、x以下の最大の整数を$[x]$と表すことにする。
いま、数列$\left\{a_n\right\}$を
$a_n=[\sqrt{2n}+\frac{1}{2}]$
と定義すると
$a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },a_6=\boxed{\ \ カ\ \ },$
となる。このとき、$a_n=10$となるのは、$\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }$の場合に限られる。
また、$\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }$である。
2022慶應義塾大学総合政策学部過去問
この動画を見る
${\Large\boxed{1}}$実数xに対して、x以下の最大の整数を$[x]$と表すことにする。
いま、数列$\left\{a_n\right\}$を
$a_n=[\sqrt{2n}+\frac{1}{2}]$
と定義すると
$a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },a_6=\boxed{\ \ カ\ \ },$
となる。このとき、$a_n=10$となるのは、$\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }$の場合に限られる。
また、$\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }$である。
2022慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2022年商学部第4問〜条件付き確率と常用対数の計算

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、
確率$\frac{1}{2}$で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、
必要ならば、$\log_{10}2=0.3010,\ \log_{10}3=0.4771$を用いなさい。
(1)10日目の価格がAよりも高くなるのは、$\boxed{\ \ ア\ \ }$日以上で価格が上昇したとき
である。また、そのような確率は$\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}$である。
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率
は$\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも
1回は価格が下落していた確率は$\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}$である。
2022慶應義塾大学商学部過去問
この動画を見る
${\Large\boxed{4}}$ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、
確率$\frac{1}{2}$で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、
必要ならば、$\log_{10}2=0.3010,\ \log_{10}3=0.4771$を用いなさい。
(1)10日目の価格がAよりも高くなるのは、$\boxed{\ \ ア\ \ }$日以上で価格が上昇したとき
である。また、そのような確率は$\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}$である。
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率
は$\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも
1回は価格が下落していた確率は$\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}$である。
2022慶應義塾大学商学部過去問