福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
福田のわかった数学〜高校2年生036〜軌跡(3)反転の話その1
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(3) 反転の話(1)\\
座標平面上で、点P(4,3)に対して\\
OP・OQ=1\\
となる点Qを半直線OP上にとる。\\
点Qの座標を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(3) 反転の話(1)\\
座標平面上で、点P(4,3)に対して\\
OP・OQ=1\\
となる点Qを半直線OP上にとる。\\
点Qの座標を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} ある国の有識者会議が、経済活性化に資する公共サービスの供給量xと、医療・\\
公衆衛生に関する公共サービスの供給量yの組み合わせの検討を行っている。供給量\\
(x,y)は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性\\
に制約を受け、次の不等式を満たすものとする。\\
\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.\\
\\
供給量(x,y)をx軸とy軸の2次元座標で表すと、実現可能な供給量の組合せ\\
(x,y)の値域は、0 \leqq x \leqq \boxed{\ \ アイ\ \ }の範囲で(1)と(4)を満たす(x,y)の部分の領域と、\\
\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}の範囲で(2)と(4)を満たす(x,y)の部分の領域の2つ\\
からなることがわかる。\\
いま、有識者会議の目標がxyの最大化であるとすると、供給量の組合せを\\
(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })とする結論を得る。\\
次に、情勢の変化に伴って、上記の(1),(2),(3),(4)に新たな不等式\\
x+y \leqq 93 \ldots(5)\\
が加わったとすると、実現可能な(x,y)の領域は、0 \leqq x \leqq \boxed{\ \ サシ\ \ }の範囲で\\
(1)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }の範囲で\\
(5)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}の範囲で\\
(2)と(4)を満たす(x,y)の部分の領域の3つに分けることができる。\\
また、政府の方針にそって、有識者会議の目標がx^2yの最大化に変更されたとすると、\\
供給量の組合せを\\
(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })\\
とする結論を導くことになる。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} ある国の有識者会議が、経済活性化に資する公共サービスの供給量xと、医療・\\
公衆衛生に関する公共サービスの供給量yの組み合わせの検討を行っている。供給量\\
(x,y)は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性\\
に制約を受け、次の不等式を満たすものとする。\\
\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.\\
\\
供給量(x,y)をx軸とy軸の2次元座標で表すと、実現可能な供給量の組合せ\\
(x,y)の値域は、0 \leqq x \leqq \boxed{\ \ アイ\ \ }の範囲で(1)と(4)を満たす(x,y)の部分の領域と、\\
\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}の範囲で(2)と(4)を満たす(x,y)の部分の領域の2つ\\
からなることがわかる。\\
いま、有識者会議の目標がxyの最大化であるとすると、供給量の組合せを\\
(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })とする結論を得る。\\
次に、情勢の変化に伴って、上記の(1),(2),(3),(4)に新たな不等式\\
x+y \leqq 93 \ldots(5)\\
が加わったとすると、実現可能な(x,y)の領域は、0 \leqq x \leqq \boxed{\ \ サシ\ \ }の範囲で\\
(1)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }の範囲で\\
(5)と(4)を満たす(x,y)の部分の領域と、\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}の範囲で\\
(2)と(4)を満たす(x,y)の部分の領域の3つに分けることができる。\\
また、政府の方針にそって、有識者会議の目標がx^2yの最大化に変更されたとすると、\\
供給量の組合せを\\
(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })\\
とする結論を導くことになる。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} xyz空間において、直方体ABCD-EFGHがz \geqq x^2+y^2\\
(0 \leqq z \leqq 1)を満たす立体の周辺および内部に存在する。この\\
直方体の面ABCD,EFGHはxy平面に平行であり、頂点A,B,C,D\\
は平面z=1上に、頂点E,F,G,Hは曲面z=x^2+y^2上に存在する。\\
\\
(1)直方体ABCD-EFGHの面ABCDおよびEFGHが1辺の長さa\\
の正方形のとき、正の実数であるaの取り得る値の範囲は\\
0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}であり、この直方体の体積は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2\\
である。\\
\\
(2)直方体ABCD-EFGHの面ABFEおよびDCGHが1辺の長さb\\
の正方形のとき、正の実数であるbの取り得る値の範囲は\\
0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}であり、この直方体の体積は\\
b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}である。\\
\\
(3)直方体ABCD-EFGHの全ての面が1辺の長さcの正方形のとき、すなわち\\
直方体ABCD-EFGHが立方体のとき、正の実数であるcの値は\\
\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}であり、立方体ABCD-EFGHの体積は\\
\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}である。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} xyz空間において、直方体ABCD-EFGHがz \geqq x^2+y^2\\
(0 \leqq z \leqq 1)を満たす立体の周辺および内部に存在する。この\\
直方体の面ABCD,EFGHはxy平面に平行であり、頂点A,B,C,D\\
は平面z=1上に、頂点E,F,G,Hは曲面z=x^2+y^2上に存在する。\\
\\
(1)直方体ABCD-EFGHの面ABCDおよびEFGHが1辺の長さa\\
の正方形のとき、正の実数であるaの取り得る値の範囲は\\
0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}であり、この直方体の体積は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2\\
である。\\
\\
(2)直方体ABCD-EFGHの面ABFEおよびDCGHが1辺の長さb\\
の正方形のとき、正の実数であるbの取り得る値の範囲は\\
0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}であり、この直方体の体積は\\
b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}である。\\
\\
(3)直方体ABCD-EFGHの全ての面が1辺の長さcの正方形のとき、すなわち\\
直方体ABCD-EFGHが立方体のとき、正の実数であるcの値は\\
\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}であり、立方体ABCD-EFGHの体積は\\
\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}である。
\end{eqnarray}
福田のわかった数学〜高校1年生036〜部屋割り論法
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(1)\\
100個の自然数がある。この中にその差が99で割り切れるような\\
2個の自然数が存在することを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(1)\\
100個の自然数がある。この中にその差が99で割り切れるような\\
2個の自然数が存在することを示せ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
福田のわかった数学〜高校2年生035〜軌跡(2)動点に連動して動く点の軌跡
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(2) 2つの動点を考える\\
定点O(0,0),\ A(1,1)と\\
円C:x^2+y^2=2\\
上を動く動点P(x,y)がある。\\
\triangle OAPの重心Gの軌跡を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(2) 2つの動点を考える\\
定点O(0,0),\ A(1,1)と\\
円C:x^2+y^2=2\\
上を動く動点P(x,y)がある。\\
\triangle OAPの重心Gの軌跡を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
福田のわかった数学〜高校1年生035〜必要条件・十分条件
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 必要条件・十分条件\\
a \gt 0とする。2つの条件p,qを\\
p:|x-1| \leqq a, q:|x| \lt 2 とする。\\
\\
(1)pがqの十分条件となるaの範囲\\
(2)pがqの必要条件となるaの範囲\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 必要条件・十分条件\\
a \gt 0とする。2つの条件p,qを\\
p:|x-1| \leqq a, q:|x| \lt 2 とする。\\
\\
(1)pがqの十分条件となるaの範囲\\
(2)pがqの必要条件となるaの範囲\\
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 曲線y=\frac{e^x+e^{-x}}{2} (x \gt 0)をCで表す。Q(X,Y)を中心とする半径rの円が曲線C\\
と、点P(t,\frac{e^t+e^{-t}}{2})\ (ただしt \gt 0)において共通の接線をもち、さらにX \lt tであるとする。\\
このときXおよびYをtの式で表すと\\
X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }\\
となる。tの関数X(t),Y(t)をX(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }により定義する。全て\\
のt \gt 0に対してX(t) \gt 0となるための条件は、rが不等式\boxed{\ \ (う)\ \ }を満たすことで\\
ある。\boxed{\ \ (う)\ \ }が成り立たないとき、関数Y(t)はt=\boxed{\ \ (え)\ \ }において最小値\boxed{\ \ (お)\ \ }\\
をとる。また\boxed{\ \ (う)\ \ }が成り立つとき、YをXの関数と考えて、(\frac{dY}{dX})^2+1をYの式で\\
表すと(\frac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ } となる。\\
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 曲線y=\frac{e^x+e^{-x}}{2} (x \gt 0)をCで表す。Q(X,Y)を中心とする半径rの円が曲線C\\
と、点P(t,\frac{e^t+e^{-t}}{2})\ (ただしt \gt 0)において共通の接線をもち、さらにX \lt tであるとする。\\
このときXおよびYをtの式で表すと\\
X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }\\
となる。tの関数X(t),Y(t)をX(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }により定義する。全て\\
のt \gt 0に対してX(t) \gt 0となるための条件は、rが不等式\boxed{\ \ (う)\ \ }を満たすことで\\
ある。\boxed{\ \ (う)\ \ }が成り立たないとき、関数Y(t)はt=\boxed{\ \ (え)\ \ }において最小値\boxed{\ \ (お)\ \ }\\
をとる。また\boxed{\ \ (う)\ \ }が成り立つとき、YをXの関数と考えて、(\frac{dY}{dX})^2+1をYの式で\\
表すと(\frac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ } となる。\\
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(10)\\
\lim_{x \to \infty}(2x+3)\sin(\log(x+3)-\log x)\\
を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 色々な極限(10)\\
\lim_{x \to \infty}(2x+3)\sin(\log(x+3)-\log x)\\
を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校2年生034〜軌跡(1)アポロニウスの円
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(1) アポロ二ウスの円\\
点O(0,0)に高さ6の、A(10,0)に高さ4\\
の塔がxy平面に垂直に立っている。\\
xy平面上で2本の塔を見上げる角が\\
等しい点Pの軌跡を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(1) アポロ二ウスの円\\
点O(0,0)に高さ6の、A(10,0)に高さ4\\
の塔がxy平面に垂直に立っている。\\
xy平面上で2本の塔を見上げる角が\\
等しい点Pの軌跡を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校3年生理系039〜極限(39)関数の極限、色々な極限(9)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(9)\\
\lim_{x \to 0}\frac{e^{2x}-e^{-x}}{x} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 色々な極限(9)\\
\lim_{x \to 0}\frac{e^{2x}-e^{-x}}{x} を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)整数kに対して、xの2次方程式x^2+kx+k+35=0の解を\alpha_k,\beta_kとおく。\\
ただし、方程式が重解をもつときは\alpha_k=\beta_kである。また\\
U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}\\
を全体集合とし、その部分集合\\
A=\left\{k|k \in Uかつ\alpha_k,\beta_kはともに実数で\alpha_k≠\beta_k\right\}\\
B=\left\{k|k \in Uかつ\alpha_k,\beta_kの実数はともに2より大きい\right\}\\
C=\left\{k|k \in Uかつ\alpha_k,\beta_kの実部と虚部はすべて整数\right\}\\
を考える。このときn(A)=\boxed{\ \ (か)\ \ },n(A \cap B)=\boxed{\ \ (き)\ \ },n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },\\
n(A \cap C)=\boxed{\ \ (け)\ \ },n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }である。ただし有限集合Xに対して\\
その要素の個数をn(X)で表す。また\bar{ A }はAの補集合である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)整数kに対して、xの2次方程式x^2+kx+k+35=0の解を\alpha_k,\beta_kとおく。\\
ただし、方程式が重解をもつときは\alpha_k=\beta_kである。また\\
U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}\\
を全体集合とし、その部分集合\\
A=\left\{k|k \in Uかつ\alpha_k,\beta_kはともに実数で\alpha_k≠\beta_k\right\}\\
B=\left\{k|k \in Uかつ\alpha_k,\beta_kの実数はともに2より大きい\right\}\\
C=\left\{k|k \in Uかつ\alpha_k,\beta_kの実部と虚部はすべて整数\right\}\\
を考える。このときn(A)=\boxed{\ \ (か)\ \ },n(A \cap B)=\boxed{\ \ (き)\ \ },n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },\\
n(A \cap C)=\boxed{\ \ (け)\ \ },n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }である。ただし有限集合Xに対して\\
その要素の個数をn(X)で表す。また\bar{ A }はAの補集合である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校1年生034〜背理法(2)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 背理法(2)\\
\sqrt2,\sqrt[3]3が無理数であることを既知として次を証明せよ。\\
p,q,\sqrt2p+\sqrt[3]3qが全て有理数 \Rightarrow p=q=0
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 背理法(2)\\
\sqrt2,\sqrt[3]3が無理数であることを既知として次を証明せよ。\\
p,q,\sqrt2p+\sqrt[3]3qが全て有理数 \Rightarrow p=q=0
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)0 \lt \alpha \lt 1,m \gt 0とする。曲線y=x^{\alpha}-mx(x \geqq 0)とx軸で囲まれた図形\\
をx軸の周りに1回転させてできる回転体の体積をVとする。mを固定してa \to +0\\
とするときのVの極限値をmの式で表すと、\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }となる。\\
また、\alphaを固定してm \to \inftyとするときm^3Vが0でない数に収束するならば\\
\alpha=\boxed{\ \ (お)\ \ }である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)0 \lt \alpha \lt 1,m \gt 0とする。曲線y=x^{\alpha}-mx(x \geqq 0)とx軸で囲まれた図形\\
をx軸の周りに1回転させてできる回転体の体積をVとする。mを固定してa \to +0\\
とするときのVの極限値をmの式で表すと、\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }となる。\\
また、\alphaを固定してm \to \inftyとするときm^3Vが0でない数に収束するならば\\
\alpha=\boxed{\ \ (お)\ \ }である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校3年生理系038〜極限(38)関数の極限、色々な極限(8)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(8)\\
\lim_{n \to \infty}x^{2-5\alpha} (0 \lt \alpha \lt 1) を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 色々な極限(8)\\
\lim_{n \to \infty}x^{2-5\alpha} (0 \lt \alpha \lt 1) を求めよ。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)点Oを中心とする半径1の円に内接する三角形ABCにおいて\\
-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }\\
が成り立っているとする。また直線OAと直線BCの交点をPとする。\\
このとき線分BC,OPの長さを求めるとBC=\boxed{\ \ (あ)\ \ },OP=\boxed{\ \ (い)\ \ }\\
である。さらに三角形ABCの面積は\boxed{\ \ (う)\ \ }である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)点Oを中心とする半径1の円に内接する三角形ABCにおいて\\
-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }\\
が成り立っているとする。また直線OAと直線BCの交点をPとする。\\
このとき線分BC,OPの長さを求めるとBC=\boxed{\ \ (あ)\ \ },OP=\boxed{\ \ (い)\ \ }\\
である。さらに三角形ABCの面積は\boxed{\ \ (う)\ \ }である。
\end{eqnarray}
2021慶應義塾大学医学部過去問
福田のわかった数学〜高校2年生033〜知って得する平行・垂直条件(2)
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(2)\\
直線l:ax+by+c=0\\
とl上にない点A(x_0,y_0)がある。\\
(1)Aを通りlに平行な直線を求めよ。\\
(2)Aを通りlに垂直な直線を求めよ。\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(2)\\
直線l:ax+by+c=0\\
とl上にない点A(x_0,y_0)がある。\\
(1)Aを通りlに平行な直線を求めよ。\\
(2)Aを通りlに垂直な直線を求めよ。\\
\end{eqnarray}
福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題
単元:
#数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(7)\\
\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 色々な極限(7)\\
\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})を求めよ。
\end{eqnarray}
福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
福田のわかった数学〜高校1年生033〜背理法(1)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 背理法(1)\\
\sqrt2,\ \sqrt[3]3 が無理数であることを証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 背理法(1)\\
\sqrt2,\ \sqrt[3]3 が無理数であることを証明せよ。
\end{eqnarray}