福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の一夜漬け数学〜図形と方程式〜領域(4)領域における最大最小、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 不等式$-1 \leqq y-x \leqq 1,$ $-1 \leqq x+y \leqq 1$ を満たす$x,y$に対して
(1)$x^2+y^2-3x-2y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$\displaystyle \frac{y}{x+2}$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$xy$ の最大値とそのときの$x,y$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 不等式$-1 \leqq y-x \leqq 1,$ $-1 \leqq x+y \leqq 1$ を満たす$x,y$に対して
(1)$x^2+y^2-3x-2y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$\displaystyle \frac{y}{x+2}$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$xy$ の最大値とそのときの$x,y$を求めよ。
福田の一夜漬け数学〜図形と方程式〜領域(3)領域における最大最小を本当に理解する、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
福田の一夜漬け数学〜図形と方程式〜領域(2)複雑なな領域の図示、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
$1 \lt ||x|-2|+||y|-2| \lt 5$ $\cdots$①
この動画を見る
${\Large\boxed{1}}$ 次の領域を図示せよ。
$1 \lt ||x|-2|+||y|-2| \lt 5$ $\cdots$①
福田の一夜漬け数学〜図形と方程式〜領域(1)基本的な領域の図示、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
この動画を見る
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$
(2)$xy \gt 1$
(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$
(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$
(5)$|x|+|y| \leqq 1$
福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。
(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。
(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。
(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。
(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)
単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。
(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。
(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
福田の一夜漬け数学〜図形と方程式〜軌跡(7)切り取られる弦の中点の軌跡(後編)、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜軌跡(6)切り取られる弦の中点の軌跡(前編)、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜軌跡(4)2直線の交点の軌跡、高校2年生
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$y+k(x-2)=0$ $\cdots$①,$ky-(x+2)=0$ $\cdots$② について
(1)$k$が全ての実数値を取るとき、①②の交点の軌跡を求めよ。
(2)$0 \lt k \lt 1$の範囲をkが動くとき、①②の交点の軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2直線$y+k(x-2)=0$ $\cdots$①,$ky-(x+2)=0$ $\cdots$② について
(1)$k$が全ての実数値を取るとき、①②の交点の軌跡を求めよ。
(2)$0 \lt k \lt 1$の範囲をkが動くとき、①②の交点の軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜軌跡(5)動点が2個ある場合の軌跡、高校2年生
単元:
#数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生
単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
この動画を見る
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
福田の一夜漬け数学〜図形と方程式〜軌跡(2)アポロニウスの円、高校2年生
単元:
#数Ⅱ#図形と方程式#点と直線#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
この動画を見る
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
この動画を見る
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(13)放物線と円の位置関係、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2+a$ $\cdots$①と円$x^2+y^2=9$ $\cdots$②の共有点の個数を求めよ。
この動画を見る
${\Large\boxed{1}}$ 放物線$y=x^2+a$ $\cdots$①と円$x^2+y^2=9$ $\cdots$②の共有点の個数を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。
${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。
${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(10)2円の位置関係、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(7)接線の公式と極線の公式、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
この動画を見る
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(4)切り取られる弦の長さと中点(基本)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(3)直線と円の位置関係、高校2年生
単元:
#数Ⅱ#円#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
この動画を見る
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生
単元:
#数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
この動画を見る
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(9)点と直線の距離の公式と三角形の内心、高校2年生
単元:
#数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3直線$\ell:3x+4y-36=0,$ $m:4x-3y+27=0,$ $n:3x-4y-20=0$で
囲まれた三角形の内心の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 3直線$\ell:3x+4y-36=0,$ $m:4x-3y+27=0,$ $n:3x-4y-20=0$で
囲まれた三角形の内心の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(8)点と直線の距離の公式と角の二等分線、高校2年生
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$\ell:5x+12y+2=0,$ $m:12x+5y-19=0$
の間の角を二等分する直線の方程式を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2直線$\ell:5x+12y+2=0,$ $m:12x+5y-19=0$
の間の角を二等分する直線の方程式を求めよ。