理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【日本最速解答速報】共通テスト2023数学1A 第1問(1)【今となっては過去問解説】
【英語】句:50音順に文法用語を解説する⑥
【英語】【句】50音順に文法用語を解説する⑥
【中学数学】高校入試:2022年度神奈川県立高校入試数学大問4(ウ)
単元:
#数学(中学生)#高校入試過去問(数学)#神奈川県公立高校入試
指導講師:
理数個別チャンネル
問題文全文(内容文):
2022年度神奈川県立高校入試数学大問4(ウ)解説していきます.
この動画を見る
2022年度神奈川県立高校入試数学大問4(ウ)解説していきます.
【英検2級ライティング】10分で8割、15分で満点狙える最新テンプレート
単元:
#英語(高校生)#英作文#英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級#自由英作文
指導講師:
理数個別チャンネル
問題文全文(内容文):
2023年度英検2級の最新テンプレ公開します。
●TOPIC
Some people say that Japan should accept more people from other countries to work in Japan.
Do you agree with this opinion?
●POINTS
Aging society
Culture
Language
この動画を見る
2023年度英検2級の最新テンプレ公開します。
●TOPIC
Some people say that Japan should accept more people from other countries to work in Japan.
Do you agree with this opinion?
●POINTS
Aging society
Culture
Language
【化学】理論化学:ダイヤモンドの結合距離
単元:
#化学#化学基礎1ー物質の構成#化学結合#理科(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ダイヤモンドの単位格子の1辺の長さをlとしたとき,C間結合の長さをlを用いて表せ
この動画を見る
ダイヤモンドの単位格子の1辺の長さをlとしたとき,C間結合の長さをlを用いて表せ
中央大学商学部英作文問題で使えるテンプレ・フレーズ(2022年過去問)
単元:
#英語(高校生)#英作文#自由英作文#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#中央大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
advantages/disadvantagesの英作文で使えるテンプレを紹介。
中央大学商学部(2022年)大問5
Many high school students like to eat at fast food restaurants. What are the advantages and disadvantages of this? Discuss both sides in your essay. Write more than 80 words in English on the answer sheet. (15点)
この動画を見る
advantages/disadvantagesの英作文で使えるテンプレを紹介。
中央大学商学部(2022年)大問5
Many high school students like to eat at fast food restaurants. What are the advantages and disadvantages of this? Discuss both sides in your essay. Write more than 80 words in English on the answer sheet. (15点)
【共通テスト国語】一見難しくても難しくない問題(2022年追試解説)
単元:
#国語(高校生)#現代文#大学入試過去問(国語)#共通テスト(現代文)
指導講師:
理数個別チャンネル
問題文全文(内容文):
共通テスト国語2022年(追試)の大問1の問3の解説です。
この動画を見る
共通テスト国語2022年(追試)の大問1の問3の解説です。
【受験理科】生物:チョウとガって同じ種類!?
【受験算数】約数・倍数:約束記号①【予習シリーズ算数・小6下(難関校編)】
単元:
#算数(中学受験)#計算と数の性質#約数・倍数を利用する問題
教材:
#予習シ#予習シリーズ算数・小6下(難関校編)#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A,Bを整数とします。AとBの最小公倍数を、最大公約数で割った値を〔A,B〕と表すことにします。例えば、〔3,4〕=12 〔4,6〕=6 〔5,10〕=2
となります。次の問いに答えなさい。
(1)〔12,15〕の値を答えなさい。
(2)21以下の整数Xで、〔x,21〕=6となるものを求めなさい。
(3)〔y,30〕=15となる数を全て求めなさい。
この動画を見る
A,Bを整数とします。AとBの最小公倍数を、最大公約数で割った値を〔A,B〕と表すことにします。例えば、〔3,4〕=12 〔4,6〕=6 〔5,10〕=2
となります。次の問いに答えなさい。
(1)〔12,15〕の値を答えなさい。
(2)21以下の整数Xで、〔x,21〕=6となるものを求めなさい。
(3)〔y,30〕=15となる数を全て求めなさい。
【数A】確率:東北大 2008年 大問4(2)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。
(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。
(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
【数検2級】数学検定2級2次:問題1
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次関数とグラフ#数学検定#数学検定2級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1.(選択)
aを定数とします。2次関数$y=2x^3-4ax+1(0\leqq x \leqq 3)$について、次の問いに答えなさい。
(1)$a=2$のとき、yのとり得る値の範囲を求めなさい。
(2)$y$のとり得る値の範囲が$1\leqq y\leqq 25$であるとき、aの値を求めなさい。
この動画を見る
問題1.(選択)
aを定数とします。2次関数$y=2x^3-4ax+1(0\leqq x \leqq 3)$について、次の問いに答えなさい。
(1)$a=2$のとき、yのとり得る値の範囲を求めなさい。
(2)$y$のとり得る値の範囲が$1\leqq y\leqq 25$であるとき、aの値を求めなさい。
【中学受験理科】天体②『季節の星座②:北斗七星の場所から季節を当てる!』
【受験理科】天体②『季節の星座②:北斗七星の場所から季節を当てる!』
【数Ⅲ】式と曲線:極方程式の直線のなす角
単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#サクシード#サクシード数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2直線
$r(\sqrt3\cos\theta+\sin\theta)=4$
$r(\sqrt3\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る
2直線
$r(\sqrt3\cos\theta+\sin\theta)=4$
$r(\sqrt3\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
【化学】無機化学:気体の製法おまけ
単元:
#化学#無機#非金属元素の単体と化合物#理科(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
『無機化学で点数を効率的に回収しよう!』キャンペーン
今回は気体の製法おまけ回!
NOやNO₂,Cl₂の生成反応(酸化還元反応)の組み方になります。
この動画を見る
『無機化学で点数を効率的に回収しよう!』キャンペーン
今回は気体の製法おまけ回!
NOやNO₂,Cl₂の生成反応(酸化還元反応)の組み方になります。
【受験理科】天体①『季節の星座①:画像で覚える星座※動画もあるよ!』
【中学受験理科】天体①『季節の星座①:画像で覚える星座※動画もあるよ!』
【数学】医学部1分解説!!2018年度聖マリアンナ医科大学大問1(2)基本公式が分かる人向け #shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$e$を自然対数の底とする。
曲線$y=1+e^x$とy軸及び2直線$x=1,y=1$で囲まれた部分を、
x軸の周りに1回転させてできる立体の体積は(イ)である。
この動画を見る
$e$を自然対数の底とする。
曲線$y=1+e^x$とy軸及び2直線$x=1,y=1$で囲まれた部分を、
x軸の周りに1回転させてできる立体の体積は(イ)である。
【数学】医学部1分解説!!2018年度聖マリアンナ医科大学大問1(1)基本公式が分かる人向け #shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを1でない正の実数とする。
このとき$\log_2{a}+\log_8{a^2}+\log_{a^6}{32}+\log_a{\sqrt{a}}+\log_{\sqrt{a}}{a}=0$
を満たすaの値で最大のものは(ア)である。
この動画を見る
aを1でない正の実数とする。
このとき$\log_2{a}+\log_8{a^2}+\log_{a^6}{32}+\log_a{\sqrt{a}}+\log_{\sqrt{a}}{a}=0$
を満たすaの値で最大のものは(ア)である。
【受験算数】平面図形:図のように四角形ABCDのすべての辺をそれぞれ2倍にのばして、四角形EFGHを作りました
単元:
#算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#平面図形その他
教材:
#中学受験新演習#中学受験新演習算数小6夏期テキスト#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように四角形ABCDのすべての辺をそれぞれ2倍にのばして、四角形EFGHを作りました。四角形EFGHの面積は、四角形ABCDの面積の何倍ですか。
この動画を見る
図のように四角形ABCDのすべての辺をそれぞれ2倍にのばして、四角形EFGHを作りました。四角形EFGHの面積は、四角形ABCDの面積の何倍ですか。
【数A】変数3つの不定方程式を解く!
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$5x+7y+9z=1$を満たす整数解$x,y,z$を求めよ
この動画を見る
$5x+7y+9z=1$を満たす整数解$x,y,z$を求めよ
【共通テスト国語】本番前に2022年追試は解いておこう(大問1を解けるか確認)
単元:
#国語(高校生)#現代文#大学入試過去問(国語)#共通テスト(現代文)
指導講師:
理数個別チャンネル
問題文全文(内容文):
共通テスト国語2022年(追試)の大問1の問2の解説です。
この動画を見る
共通テスト国語2022年(追試)の大問1の問2の解説です。
【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために)
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
この動画を見る
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
【算数】数の性質:素数について覚えよう!
【英語】as ifについてpart2(2022青山学院大)
単元:
#英語(高校生)#英文法#仮定法#大学入試過去問(英語)#学校別大学入試過去問解説(英語)
指導講師:
理数個別チャンネル
問題文全文(内容文):
It's almost as if you have saved up a lot of listening that you can use later to help you understand and relate to that person even after significant time apart.(2022.青山学院・文)
この動画を見る
It's almost as if you have saved up a lot of listening that you can use later to help you understand and relate to that person even after significant time apart.(2022.青山学院・文)
【数C】ベクトルの基本⑱空間ベクトルの基本計算
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
空間ベクトルの基本
a=(2,2,4),b=(4,4,2)のなす角を求めよ
この動画を見る
空間ベクトルの基本
a=(2,2,4),b=(4,4,2)のなす角を求めよ
【数B】ベクトル:ベクトルの基本⑱空間ベクトルの基本計算
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
空間ベクトルの基本
$a=(2,2,4),b=(4,4,2)$のなす角を求めよ
この動画を見る
空間ベクトルの基本
$a=(2,2,4),b=(4,4,2)$のなす角を求めよ
【数学】東大理科2022大問6ガチ解説!考え方から正解まで、思考プロセスをお見せします!
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
この動画を見る
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
【数A】不定方程式の答えがあわないことありませんか?
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
不定方程式の答えあわせをしたとき、出した答えと解答が違うときがあるとおもいます。
その場合の確認方法についての解説です!
3x-7y=1を満たす整数解x,yを求めよ
この動画を見る
不定方程式の答えあわせをしたとき、出した答えと解答が違うときがあるとおもいます。
その場合の確認方法についての解説です!
3x-7y=1を満たす整数解x,yを求めよ