一橋大学
大学入試問題#920「工夫しがいがある問題」
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$
出典:1963年 一橋大学
この動画を見る
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$
出典:1963年 一橋大学
大学入試問題#919「昔は落ち着いた問題」
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。
出典:一橋大(1960)
この動画を見る
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。
出典:一橋大(1960)
一橋大 確率のふりをした整数問題
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
赤玉x個、白玉x個の中から2個取り出す。
同じ色の玉が出る確率と異なる色の玉が出る確率が等しい(x,y)の組をすべて求めよ。
一橋大学過去問
この動画を見る
赤玉x個、白玉x個の中から2個取り出す。
同じ色の玉が出る確率と異なる色の玉が出る確率が等しい(x,y)の組をすべて求めよ。
一橋大学過去問
【数学A】一橋大学文系2010 確率の問題(解説)
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$n$を3以上の自然数とする
サイコロを$n$回投げ、出た目の数をそれぞれ順に$X_1,X_2,$・・・$,X_n$とする
$i=2,3,…n$に対して$Xi=Xi-1$となる事象を$Ai$ことする。
(1)$A_2,A_3,…,A_n$のうち少なくとも1つが起こる確率$pn$は?
(2)$A_2,A_3,…,A_n$少なくとも2つが起こる確率$gn$は?
この動画を見る
$n$を3以上の自然数とする
サイコロを$n$回投げ、出た目の数をそれぞれ順に$X_1,X_2,$・・・$,X_n$とする
$i=2,3,…n$に対して$Xi=Xi-1$となる事象を$Ai$ことする。
(1)$A_2,A_3,…,A_n$のうち少なくとも1つが起こる確率$pn$は?
(2)$A_2,A_3,…,A_n$少なくとも2つが起こる確率$gn$は?
福田の数学〜一橋大学2023年文系第5問〜反復試行の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第4問〜群数列
単元:
#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第2問〜共通接線が存在する条件
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ aを正の実数とする。2つの曲線$C_1$:y=$x^3$+2$ax^2$ および$C_2$:y=3$ax^2$$-\displaystyle\frac{3}{a}$ の両方に接する直線が存在するようなaの範囲を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{2}$ aを正の実数とする。2つの曲線$C_1$:y=$x^3$+2$ax^2$ および$C_2$:y=3$ax^2$$-\displaystyle\frac{3}{a}$ の両方に接する直線が存在するようなaの範囲を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。
2023一橋大学文系過去問
整数問題!問題文でかなり範囲が絞られている!?さらに候補を絞り込もう!【一橋大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+1} \mathrm{ C }_{k+1}$=$2({}_n \mathrm{ C }_{k-1}+{}_n \mathrm{ C }_{k+1})$
が成り立つような整数の組(n,k)を求めよ。
一橋大過去問
この動画を見る
nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+1} \mathrm{ C }_{k+1}$=$2({}_n \mathrm{ C }_{k-1}+{}_n \mathrm{ C }_{k+1})$
が成り立つような整数の組(n,k)を求めよ。
一橋大過去問
2023一橋大 確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
A,B,Cの3人が順番にサイコロを振り,最初に1を出した人が勝ち,
だれかが1を出すか、全員がn回ずつ振ったら終了
A,B,Cそれぞれが勝つ確率$P_A,P_B,P_C$を求めよ.
2023一橋大過去問
この動画を見る
A,B,Cの3人が順番にサイコロを振り,最初に1を出した人が勝ち,
だれかが1を出すか、全員がn回ずつ振ったら終了
A,B,Cそれぞれが勝つ確率$P_A,P_B,P_C$を求めよ.
2023一橋大過去問
極限の難問!答えは予測できるが・・・【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty }(\cos^2 \sqrt{x+1}+\sin^2\sqrt{x})$を求めよ。
一橋大過去問
この動画を見る
$\displaystyle \lim_{ x \to \infty }(\cos^2 \sqrt{x+1}+\sin^2\sqrt{x})$を求めよ。
一橋大過去問
福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大
単元:
#数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。
2018一橋大学文系過去問
この動画を見る
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。
2018一橋大学文系過去問
福田の1.5倍速演習〜合格する重要問題087〜一橋大学2018年度文系第3問〜サイコロの目の積がkとなる確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。
2018一橋大学文系過去問
この動画を見る
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。
2018一橋大学文系過去問
多くの単元が絡んだ問題!解けますか?【一橋大学】【数学 入試問題】
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#三角関数#指数関数と対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0≦θ≦2\pi$とする。$\log_{ 2 }(4\sin^2θ+3\cosθ-4),$
$\log_{ 2 }(-4\cos^3θ+3\cosθ+1)$がともに整数となるような$θ$の値をすべて求めよ。
一橋大過去問
この動画を見る
$0≦θ≦2\pi$とする。$\log_{ 2 }(4\sin^2θ+3\cosθ-4),$
$\log_{ 2 }(-4\cos^3θ+3\cosθ+1)$がともに整数となるような$θ$の値をすべて求めよ。
一橋大過去問
【工夫あり】二次方程式の解を四捨五入!?【一橋大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。
一橋大過去問
この動画を見る
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。
一橋大過去問
図形×整数問題!差がつく問題です【一橋大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
直角三角形の3辺の長さがすべて整数のとき、面積は2の整数倍であることを示せ。
一橋大過去問
この動画を見る
直角三角形の3辺の長さがすべて整数のとき、面積は2の整数倍であることを示せ。
一橋大過去問
福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解
単元:
#連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問
この動画を見る
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問
福田の1.5倍速演習〜合格する重要問題046〜一橋大学2017年度文系第3問〜次数のわからない整式の決定問題
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。
\end{eqnarray}
2017一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。
\end{eqnarray}
2017一橋大学文系過去問
工夫が大事!3次関数の決定【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の4つの条件を満たす3次関数を求めよ
(i)f(0)=0,f(2)=1
(ii)0.2
(iii)f(x)は極大値0をもつ
(iv)f(x)=0の解はすべて整数
一橋2020
この動画を見る
次の4つの条件を満たす3次関数を求めよ
(i)f(0)=0,f(2)=1
(ii)0.2
(iv)f(x)=0の解はすべて整数
一橋2020
工夫が大事!3次関数の決定【一橋大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
以下の4つの条件を満たす3次関数$f(x)$を求めよ。
( i )$f(0)=0,f(2)=1$
( ii )$0.2<f(1)<0.3$
( iii )$f(x)は極限値0をもつ$
(iv)$f(x)=0の解はすべて整数$
この動画を見る
以下の4つの条件を満たす3次関数$f(x)$を求めよ。
( i )$f(0)=0,f(2)=1$
( ii )$0.2<f(1)<0.3$
( iii )$f(x)は極限値0をもつ$
(iv)$f(x)=0の解はすべて整数$
福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 平面上の2つのベクトル\overrightarrow{ a }と\overrightarrow{ b }は零ベクトルではなく、\overrightarrow{ a }と\overrightarrow{ b }のなす角度は\\
60°である。このとき\\
r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }|} \\
のとりうる値の範囲を求めよ。 \\
\end{eqnarray}
2016一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} 平面上の2つのベクトル\overrightarrow{ a }と\overrightarrow{ b }は零ベクトルではなく、\overrightarrow{ a }と\overrightarrow{ b }のなす角度は\\
60°である。このとき\\
r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }|} \\
のとりうる値の範囲を求めよ。 \\
\end{eqnarray}
2016一橋大学文系過去問
大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを実数とし、f(x)=x^3-3axとする。区間-1 \leqq x \leqq 1における\\
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。
\end{eqnarray}
2016一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} aを実数とし、f(x)=x^3-3axとする。区間-1 \leqq x \leqq 1における\\
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。
\end{eqnarray}
2016一橋大学文系過去問
数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。
一橋大過去問
この動画を見る
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。
一橋大過去問
対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{y} (6x+y)=x$を満たす正の整数$x,y$の組を求めよ。
一橋大過去問
この動画を見る
$\log_{y} (6x+y)=x$を満たす正の整数$x,y$の組を求めよ。
一橋大過去問
対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$log y (6x+y) =x$
を満たす正の整数の組を求めよ
一橋大過去問
この動画を見る
$log y (6x+y) =x$
を満たす正の整数の組を求めよ
一橋大過去問
福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と\hspace{15pt}\\
なるものの個数をE(n)で表す。たとえば\hspace{151pt}\\
E(2)=1,\ \ \ \ E(3)=2,\ \ \ \ E(4)=2,...,\ \ \ \ E(10)=4, \ \ ...\hspace{40pt}\\
である。\hspace{270pt}\\
(1)E(1024)を求めよ。\hspace{211pt}\\
(2)E(2015)を求めよ。\hspace{211pt}\\
(3)mを正の整数とし、pとqを異なる素数とする。n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}\\
が成り立つことを示せ。\hspace{216pt}
\end{eqnarray}
2015一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と\hspace{15pt}\\
なるものの個数をE(n)で表す。たとえば\hspace{151pt}\\
E(2)=1,\ \ \ \ E(3)=2,\ \ \ \ E(4)=2,...,\ \ \ \ E(10)=4, \ \ ...\hspace{40pt}\\
である。\hspace{270pt}\\
(1)E(1024)を求めよ。\hspace{211pt}\\
(2)E(2015)を求めよ。\hspace{211pt}\\
(3)mを正の整数とし、pとqを異なる素数とする。n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}\\
が成り立つことを示せ。\hspace{216pt}
\end{eqnarray}
2015一橋大学文系過去問
難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。
一橋大過去問
この動画を見る
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。
一橋大過去問
三角関数の基礎問題です!2通りで解説【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形ABCにおいて、$∠A=60°$のとき、
$\sin B+\sin C$と$\sin B \sin C$の取り得る値の範囲を求めよ.
一橋大過去問
この動画を見る
三角形ABCにおいて、$∠A=60°$のとき、
$\sin B+\sin C$と$\sin B \sin C$の取り得る値の範囲を求めよ.
一橋大過去問