2次関数
【高校数学】2次関数~対称移動~ 2-3【数学Ⅰ】
【高校数学】2次関数の平行移動例題~基礎問題3選~ 2-2.5【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか
-----------------
2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ
-----------------
3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
この動画を見る
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか
-----------------
2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ
-----------------
3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
【数Ⅰ】2次関数:aを正の定数とする。関数y=x²-2x(0≦x≦a)について、次の問いに答えよ。(1)最大値を求めよ。(2)最小値を求めよ。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。
関数$y=x^2-2x(0\leqq x\leqq a)$について、次の問いに答えよ。
(1)最大値を求めよ。
(2)最小値を求めよ。
この動画を見る
aを正の定数とする。
関数$y=x^2-2x(0\leqq x\leqq a)$について、次の問いに答えよ。
(1)最大値を求めよ。
(2)最小値を求めよ。
【数Ⅰ】2次関数:関数決定その4! 3点を通る場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数のグラフが次の3点を通るとき、その2次関数を求めよ。
(-1,9),(1,-1),(2,0)
この動画を見る
2次関数のグラフが次の3点を通るとき、その2次関数を求めよ。
(-1,9),(1,-1),(2,0)
【数Ⅰ】2次関数:2次関数 y=-x²∔2ax (0≦x≦2)の最大値と最小値を求めよ。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数 $y=-x^2+2ax(0\leqq x\leqq 2)$の最大値と最小値を求めよ。
この動画を見る
2次関数 $y=-x^2+2ax(0\leqq x\leqq 2)$の最大値と最小値を求めよ。
【数Ⅰ】2次関数:関数決定その3! 最小値がわかっている場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
x=1で1最小値5をとり、x=3のときy=7となる。
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
x=1で1最小値5をとり、x=3のときy=7となる。
【高校数学】2次関数のグラフ~放物線を理解しよう~ 2-2【数学Ⅰ】
【高校数学】2次関数~どこよりも易しく~ 2-1【数学Ⅰ】
単なる二次方程式
18神奈川県教員採用試験(数学:2番 不等式)
単元:
#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣$(x^2-6x+2)^2-4(x^2-6x+2)-45 \leqq 0$をみたす整数xの個数を求めよ。
この動画を見る
2⃣$(x^2-6x+2)^2-4(x^2-6x+2)-45 \leqq 0$をみたす整数xの個数を求めよ。
富山大 複雑な二次関数の最小値
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
この動画を見る
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
上智大2020整数解をもつ二次方程式の条件 2つの解法
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.
2020上智大過去問
この動画を見る
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.
2020上智大過去問
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
単元:
#数Ⅰ#2次関数#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$
$y=-(x-2)(x+3)$
$x^2+7x+6 \leqq 0$
$-x \gt 5$
$-x \geqq \displaystyle \frac{3}{2}$
$-x^2+2x+4 \leqq 0$
この動画を見る
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$
$y=-(x-2)(x+3)$
$x^2+7x+6 \leqq 0$
$-x \gt 5$
$-x \geqq \displaystyle \frac{3}{2}$
$-x^2+2x+4 \leqq 0$
京都府立医大 二次関数の最大値
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m$は自然数の定数である.
$f(x)=-(m+1)x^2+(m^2+3)x$
変数$x$が整数値のみとるときの$f(x)$の最大値を求めよ.
1993京都府立医大過去問
この動画を見る
$m$は自然数の定数である.
$f(x)=-(m+1)x^2+(m^2+3)x$
変数$x$が整数値のみとるときの$f(x)$の最大値を求めよ.
1993京都府立医大過去問
【数Ⅰ】2次関数:放物線y=x²-6x+10をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めましょう。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
この動画を見る
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
産業医大 3次方程式と2次方程式の共通解
単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
この動画を見る
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
【数Ⅰ】2次関数:2次方程式が重解を持つ条件をわかりやすく解説!
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
この動画を見る
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
指数関数 2次関数 大分大
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
この動画を見る
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
【数Ⅰ】2次関数:関数決定その2! 軸がわかっている場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
軸が直線x=-2で、2点(0,3),(-1,0)を通る。
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
軸が直線x=-2で、2点(0,3),(-1,0)を通る。
【数Ⅰ】2次関数:関数決定その1! 頂点がわかっている場合
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
頂点が(1,-2)で、点(2,-3)を通る。
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
頂点が(1,-2)で、点(2,-3)を通る。
千葉大 2次方程式の解 整数問題
単元:
#数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
この動画を見る
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
信州大 絶対値のついた2次方程式 相違4実根
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
この動画を見る
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
福井大 2次方程式と複素平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
山梨大 2次方程式と複素数平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
「定数a入りの二次不等式」【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
この動画を見る
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
【高校数学】二次関数を36分でまとめてみた【解説・授業】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
この動画を見る
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
熊本大(医)整数・数列・二次関数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
この動画を見る
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
自治医大 関数の最小値
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
この動画を見る
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
奈良県立医大 長方形の面積の最大値
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
この動画を見る
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
【数学】イッパツ理解!二次関数の「場合分け」をする基準~全国模試1位の勉強法【篠原好】
単元:
#数Ⅰ#2次関数#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「二次関数の「場合分け」をする基準」についてお話しています。
この動画を見る
イッパツ理解!
数学の「二次関数の「場合分け」をする基準」についてお話しています。