2次関数

19神奈川県教員採用試験(数学:三角形の最小値)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=x^2+2$上の点Pと原点Oと点A(3,3)で△OAPの面積の最小値を求めよ。
この動画を見る
$y=x^2+2$上の点Pと原点Oと点A(3,3)で△OAPの面積の最小値を求めよ。
19神奈川県教員採用試験(数学:関数の最大値)

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
この動画を見る
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
千葉大 2次方程式の解 整数問題

単元:
#数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
この動画を見る
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ
出典:2003年千葉大学 過去問
信州大 絶対値のついた2次方程式 相違4実根

単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
この動画を見る
$x^2+ax+b=|x|$が相異なる4個の実数解をもつような$(a,b)$の存在する領域を図示せよ
出典:2006年信州大学 過去問
福井大 2次方程式と複素平面

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
山梨大 2次方程式と複素数平面

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
「定数a入りの二次不等式」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
この動画を見る
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
空間座標の導入!!

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点$P(2,3,4)$に対して
(1)$xy$平面に関して対称な点の座標は( , , )
(2)$yz$平面に関して対称な点の座標は( , , )
(3)$zx$平面に関して対称な点の座標は( , , )
(4)$x$軸平面に関して対称な点の座標は( , , )
(5)$y$軸平面に関して対称な点の座標は( , , )
(6)$z$軸平面に関して対称な点の座標は( , , )
(7)原点平面に関して対称な点の座標は( , , )
この動画を見る
点$P(2,3,4)$に対して
(1)$xy$平面に関して対称な点の座標は( , , )
(2)$yz$平面に関して対称な点の座標は( , , )
(3)$zx$平面に関して対称な点の座標は( , , )
(4)$x$軸平面に関して対称な点の座標は( , , )
(5)$y$軸平面に関して対称な点の座標は( , , )
(6)$z$軸平面に関して対称な点の座標は( , , )
(7)原点平面に関して対称な点の座標は( , , )
【高校数学】二次関数を36分でまとめてみた【解説・授業】

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
この動画を見る
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
熊本大(医)整数・数列・二次関数

単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
この動画を見る
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
自治医大 関数の最小値

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
この動画を見る
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ
出典:自治医科大学 過去問
奈良県立医大 長方形の面積の最大値

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
この動画を見る
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ
出典:奈良県立医科大学 問題
【数学】イッパツ理解!二次関数の「場合分け」をする基準~全国模試1位の勉強法【篠原好】

単元:
#数Ⅰ#2次関数#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「二次関数の「場合分け」をする基準」についてお話しています。
この動画を見る
イッパツ理解!
数学の「二次関数の「場合分け」をする基準」についてお話しています。
千葉大 放物線と法線

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
この動画を見る
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
早稲田大 対数 2次方程式 負の実数解

単元:
#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
この動画を見る
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
お茶の水女子大 2次方程式 訂正版

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:1988年お茶の水女子大学 過去問訂正版
この動画を見る
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:1988年お茶の水女子大学 過去問訂正版
お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

単元:
#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
この動画を見る
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
愛知教育大 二次不等式

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$
出典:2018年愛知教育大学 過去問
この動画を見る
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$
出典:2018年愛知教育大学 過去問
京都大 絶対値のついた二次関数の共有点 東大数学科院卒 杉山聡

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
この動画を見る
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
立教大 2次方程式の解 Mathematics Japanese university entrance exam

単元:
#2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
この動画を見る
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
島根大(医)指数方程式 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ
(1)
$a,b$が満たす条件
(2)
$b$の値の範囲は?
出典:1996年島根大学医学部 過去問
この動画を見る
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ
(1)
$a,b$が満たす条件
(2)
$b$の値の範囲は?
出典:1996年島根大学医学部 過去問
信州大 二次方程式・二次関数 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
この動画を見る
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
この動画を見る
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
二次方程式の解の公式 東大「卒」のもっちゃんなら導けるよね!

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{-b \pm \sqrt{ b^2-4ac }}{2a}$
この動画を見る
$x=\displaystyle \frac{-b \pm \sqrt{ b^2-4ac }}{2a}$
東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
この動画を見る
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
この動画を見る
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
一橋大 3次方程式 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
この動画を見る
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
東北大 二次関数と接線 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$
(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲
(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ
(3)
(2)の2直線の交点の描く図形を図表せよ
出典:2015年東北大学 過去問
この動画を見る
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$
(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲
(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ
(3)
(2)の2直線の交点の描く図形を図表せよ
出典:2015年東北大学 過去問
二次方程式が整数解を持つ条件 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m$自然数
$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
この動画を見る
$m$自然数
$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
この動画を見る
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問