2次関数 - 質問解決D.B.(データベース) - Page 12

2次関数

お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:お茶の水女子大学 過去問訂正版
この動画を見る 

愛知教育大 二次不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$

出典:2018年愛知教育大学 過去問
この動画を見る 

京都大 絶対値のついた二次関数の共有点 東大数学科院卒 杉山聡

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ

出典:京都大学 過去問
この動画を見る 

立教大 2次方程式の解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?

出典:立教大学 過去問
この動画を見る 

島根大(医)指数方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ

(1)
$a,b$が満たす条件

(2)
$b$の値の範囲は?

出典:1996年島根大学医学部 過去問
この動画を見る 

信州大 二次方程式・二次関数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲

出典:2002年信州大学 過去問
この動画を見る 

長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲

出典:1988年長崎大学医学部 過去問
この動画を見る 

二次方程式の解の公式 東大「卒」のもっちゃんなら導けるよね!

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{-b \pm \sqrt{ b^2-4ac }}{2a}$
この動画を見る 

東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ

出典:1997年東京大学 過去問
この動画を見る 

高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす

(ア)
ある実数$a$に対して$f(a) \lt 0$

(イ)
任意の整数$n$に対して$f(n) \geqq 0$

$f(x)$を求めよ

出典:高知大学 過去問
この動画を見る 

一橋大 3次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$整数

$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。

出典:一橋大学 過去問
この動画を見る 

東北大 二次関数と接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
この動画を見る 

二次方程式が整数解を持つ条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m$自然数

$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
この動画を見る 

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 

東工大 二次方程式と四次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+2x+a$
$f(x)=0$が相違なる実根をもち、$f(f(x))=0$が重解$\gamma$をもつ。
$\gamma,a$の値を求めよ。

出典:東京工業大学 過去問
この動画を見る 

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5x+3=0$の2解を$\alpha, \beta$
(1)$\alpha^3,\beta^3$を解にもつ2次方程式
  $x^2+px+q=0$ $p,q$の値



(2)$|\alpha-\beta|=m+d$
$(m$整数,$0 \leqq d \lt 1)$
$n \leqq 10d \lt n+1$ 整数$n$


過去問:センター試験
この動画を見る 

福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
この動画を見る 

北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る 

千葉大 二重絶対値記号のついた二次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$|x^2-6x-|x-6||+x=a$
実数解の個数(a実数)
この動画を見る 

高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
この動画を見る 

大阪大 絶対値のついた二次関数と直線の面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
この動画を見る 

東京水産大 3次関数と2次関数の接する条件 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'82東京水産大学過去問題
$y=x^2(x+5),y=-x^2+a \quad (a \neq 0)$
が接するようなaの値を定め、又そのとき2曲線によって囲まれる面積
この動画を見る 

北海道大 2次方程式 対数方程式 解の位置関係 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84北海道大学過去問題
m>2 実数
$x^2-2^{m+1}x+3・2^m=0$・・・①
$2log_2x-log_2(x-1)=m$・・・②
(1)①、②はそれぞれ2つの異なる実数解をもつことを示せ
(2)①の解の1つだけが②の2つの解の間にあることを示せ
この動画を見る 

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

横浜市(医)複素数の2次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'00横浜市立大学過去問題
虚部が正の複素数Zで$iZ^2+2iZ+\frac{1}{2}+i=0$をみたすZを
$Z=a+bi$(a,b実数.b>0)の形で求めよ。
この動画を見る 

【高校数学】2次不等式②~連立不等式・基礎と応用~ 2-12【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exa

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
この動画を見る 

【高校数学】2次不等式①~これで理解できるくね?~ 2-11【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次不等式の説明動画です
この動画を見る 

【高校数学】2次方程式④~放物線と直線の共有点~ 2-10【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)放物線y=x²-4x+5と直線y=x+1の共有点の座標を求めよ。

(2)放物線y=x²-1と直線y=2x-kが接するとき、定数kの値を求めよ。
この動画を見る 
PAGE TOP