図形の性質
図形の性質
福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大

単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
空間内の異なる$4$点
$A,B,C,D$が$AD=BC=2$、
$AB=CD=1$を満たし、線分$AD$と線分$BC$が
点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ
$AP:PD=s:(1-s),$
$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$
に内分しているとする。次の問いに答えよ。
(1)$s$を$t$を用いて表せ。
(2)$t$のとりうる値の範囲を求めよ。
(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、
$\triangle ABP$の辺と内部が通過する部分の体積を
$V$とする。$V$の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{3}$
空間内の異なる$4$点
$A,B,C,D$が$AD=BC=2$、
$AB=CD=1$を満たし、線分$AD$と線分$BC$が
点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ
$AP:PD=s:(1-s),$
$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$
に内分しているとする。次の問いに答えよ。
(1)$s$を$t$を用いて表せ。
(2)$t$のとりうる値の範囲を求めよ。
(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、
$\triangle ABP$の辺と内部が通過する部分の体積を
$V$とする。$V$の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限

単元:
#数A#図形の性質#関数と極限#数列の極限#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
図は動画参照
半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。
・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。
円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。
(1) $q$を$p$と$\theta$を用いて表せ。
(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。
(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。
(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
この動画を見る
図は動画参照
半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。
・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。
円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。
(1) $q$を$p$と$\theta$を用いて表せ。
(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。
(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。
(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

単元:
#数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)$P$を平面上の正九角形とする。
$P$の異なる$2$つの頂点を通る直線をすべて考える。
これら$36$本の直線のうちの$3$本により平面上で
囲まれてできる正三角形の総数は$\boxed{エ}$である。
ただし、互いに合同でも位置の異なるものは
異なる三角形として数える。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{1}$
(4)$P$を平面上の正九角形とする。
$P$の異なる$2$つの頂点を通る直線をすべて考える。
これら$36$本の直線のうちの$3$本により平面上で
囲まれてできる正三角形の総数は$\boxed{エ}$である。
ただし、互いに合同でも位置の異なるものは
異なる三角形として数える。
$2025$年早稲田大学商学部過去問題
福田のおもしろ数学559〜3Xnのタイルを2つの図形で覆うことができるためのnの条件

単元:
#数A#図形の性質#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
図のような$3\times n$のタイルを(動画を参照)の
$2$種類の図形を重ならないように置いて覆う
ことができるのは$n$がどんな値のときか?
図は動画内参照
この動画を見る
図のような$3\times n$のタイルを(動画を参照)の
$2$種類の図形を重ならないように置いて覆う
ことができるのは$n$がどんな値のときか?
図は動画内参照
福田のおもしろ数学558〜長方形を面積の等しい5個の長方形に分割すると合同な長方形が含まれている証明

単元:
#数A#図形の性質#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある長方形を面積の等しい$5$個の長方形に
分割する。
このとき、少なくとも$2$個は
合同であることを証明せよ。
この動画を見る
ある長方形を面積の等しい$5$個の長方形に
分割する。
このとき、少なくとも$2$個は
合同であることを証明せよ。
福田のおもしろ数学556〜直角三角形の内接円の接点が斜辺を分ける長さと面積

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
図のような直角三角形の内接円が斜辺を
その接点で$a$と$b$に分けている。
この直角三角形の面積を求めて下さい。
図は動画内参照
この動画を見る
図のような直角三角形の内接円が斜辺を
その接点で$a$と$b$に分けている。
この直角三角形の面積を求めて下さい。
図は動画内参照
福田の数学〜九州大学2025理系第4問〜平面幾何の証明

単元:
#数A#図形の性質#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
半径$1$の円周上に反時計回りに
点$A,B,C,D$を順にとり、
線分$AD$は直径で、$AC=CD$、
$AB=BC$が成り立つとする。
(1)$\angle ACB$を求めよ。
(2)$BC$を求めよ。
(3)線分$AC$と線分$BD$の交点を$E$とするとき、
三角形$BCE$の面積を求めよ。
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{4}$
半径$1$の円周上に反時計回りに
点$A,B,C,D$を順にとり、
線分$AD$は直径で、$AC=CD$、
$AB=BC$が成り立つとする。
(1)$\angle ACB$を求めよ。
(2)$BC$を求めよ。
(3)線分$AC$と線分$BD$の交点を$E$とするとき、
三角形$BCE$の面積を求めよ。
$2025$年九州大学理系過去問題
福田の数学〜神戸大学2025理系第4問〜空間ベクトルと三角形の面積の最小

単元:
#数A#大学入試過去問(数学)#図形の性質#空間ベクトル#三角形の辺の比(内分・外分・二等分線)#空間ベクトル#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
福田のおもしろ数学533〜凸四角形の性質に関する証明

単元:
#数A#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
凸四角形$ABCD$において
$\angle CBD = 2\angle ADB,\angle ABD = 2\angle CDB,AB=CB$
のとき、
$AD=CD$を証明して下さい。
図は動画内参照
この動画を見る
凸四角形$ABCD$において
$\angle CBD = 2\angle ADB,\angle ABD = 2\angle CDB,AB=CB$
のとき、
$AD=CD$を証明して下さい。
図は動画内参照
福田のおもしろ数学531〜三角形に関する命題とその逆

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
左の三角形$ABC$において
$\angle A=3\angle B$
$\Rightarrow (a^2-b^2)(a-b)=bc^2$
が成り立つことを示せ。
また、逆は成り立つか?
図は動画内参照
この動画を見る
左の三角形$ABC$において
$\angle A=3\angle B$
$\Rightarrow (a^2-b^2)(a-b)=bc^2$
が成り立つことを示せ。
また、逆は成り立つか?
図は動画内参照
福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
この動画を見る
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ

単元:
#数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$を実数の定数とし、
座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。
また、放物線$y=x^2$を$C$とする。
以下に答えなさい。
(1)点$A$から曲線$C$に引いた$2$本の接線のうち、
傾きが正の接線を$\ell_1$とし、
傾きが負の接線を$\ell_2$とするとき、
直線$\ell_1$の方程式は$y=\boxed{テ}$であり、
直線$\ell_2$の方程式は$y=\boxed{ト}$である。
また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、
$\tan\theta=\boxed{ナ}$である。
ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。
さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた
図形の面積は$\boxed{ニ}$である。
(2)点$P$が曲線$C$全体を動くときの
$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。
このとき、$m$を$k$を用いて表すと、
$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、
$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{4}$
$k$を実数の定数とし、
座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。
また、放物線$y=x^2$を$C$とする。
以下に答えなさい。
(1)点$A$から曲線$C$に引いた$2$本の接線のうち、
傾きが正の接線を$\ell_1$とし、
傾きが負の接線を$\ell_2$とするとき、
直線$\ell_1$の方程式は$y=\boxed{テ}$であり、
直線$\ell_2$の方程式は$y=\boxed{ト}$である。
また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、
$\tan\theta=\boxed{ナ}$である。
ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。
さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた
図形の面積は$\boxed{ニ}$である。
(2)点$P$が曲線$C$全体を動くときの
$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。
このとき、$m$を$k$を用いて表すと、
$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、
$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
福田のおもしろ数学485〜三角形の内部の点から下ろした垂線の長さと最小値

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\triangle ABC$の内部の点$P$から辺$BC,CA,AB$へ
下ろした垂線の足をそれぞれ$D,E,F$とする。
$\dfrac{BC}{PD}+\dfrac{CA}{PE}+\dfrac{AB}{PF}$
を最小とする$P$を決定せよ。
図は動画内参照
この動画を見る
$\triangle ABC$の内部の点$P$から辺$BC,CA,AB$へ
下ろした垂線の足をそれぞれ$D,E,F$とする。
$\dfrac{BC}{PD}+\dfrac{CA}{PE}+\dfrac{AB}{PF}$
を最小とする$P$を決定せよ。
図は動画内参照
福田のおもしろ数学483〜直角に曲がった廊下を曲がれる棒の長さの最大値

単元:
#数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
棒を水平に持って、幅$a$の廊下から、
それに直角な幅$b$の廊下に曲がりたい。
これが可能であるための
棒の長さの最大値を求めて下さい。
図は動画内参照
この動画を見る
棒を水平に持って、幅$a$の廊下から、
それに直角な幅$b$の廊下に曲がりたい。
これが可能であるための
棒の長さの最大値を求めて下さい。
図は動画内参照
福田の数学〜早稲田大学理工学部2025第4問〜4つの互いに外接する球面の中心が作る四面体の体積

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
空間内に原点$O$を中心とする半径$r$の球面$S$がある。
さらに、半径が$1,2,3$の球面$S_1,S_2,S_3$があり、
これら$4$つの球面のうち
どの$2$つの球面も互いに外接している。
$S_1,S_2,S_3$中心を順に$P_1,P_2,P_3$とし、
$O,P_1,P_2,P_3$は同一平面上にないとする。
さらに、球面$S$が球面$S_1,S_2,S_3$と
接する$3$つの点と、
$\overrightarrow{OQ}=\dfrac{1}{4}(\overrightarrow{OP_1}+\overrightarrow{OP_2}+\overrightarrow{OP_3})$
により定まる点$Q$は、同一平面上にあるとする。
次の問いに答えよ。
(1)$r$の値を求めよ。
(2)四面体$OP_1P_2P_3$の体積を求めよ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{4}$
空間内に原点$O$を中心とする半径$r$の球面$S$がある。
さらに、半径が$1,2,3$の球面$S_1,S_2,S_3$があり、
これら$4$つの球面のうち
どの$2$つの球面も互いに外接している。
$S_1,S_2,S_3$中心を順に$P_1,P_2,P_3$とし、
$O,P_1,P_2,P_3$は同一平面上にないとする。
さらに、球面$S$が球面$S_1,S_2,S_3$と
接する$3$つの点と、
$\overrightarrow{OQ}=\dfrac{1}{4}(\overrightarrow{OP_1}+\overrightarrow{OP_2}+\overrightarrow{OP_3})$
により定まる点$Q$は、同一平面上にあるとする。
次の問いに答えよ。
(1)$r$の値を求めよ。
(2)四面体$OP_1P_2P_3$の体積を求めよ。
$2025$年早稲田大学理工学部過去問題
福田の数学〜慶應義塾大学薬学部2025第1問(2)〜正八面体に内接する立方体の体積

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#立体図形#立体切断#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)$a$は$a\gt 0$を満たす実数とする。
$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$
$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体
$S$がある。
(i)$S$の体積は$\boxed{オ}$である。
(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、
$U$の体積は$\boxed{カ}$である。
$2025$年慶應義塾大学薬学部過去問題
この動画を見る
$\boxed{1}$
(2)$a$は$a\gt 0$を満たす実数とする。
$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$
$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体
$S$がある。
(i)$S$の体積は$\boxed{オ}$である。
(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、
$U$の体積は$\boxed{カ}$である。
$2025$年慶應義塾大学薬学部過去問題
福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
円$C_1:x^2+y^2=1$を考える。
実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、
点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の
接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。
また、座標平面上の原点を$O(0,0)$とする。
(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた
四角形の面積$S$を$p,q$を用いて表せ。
(2)点$P$が楕円
$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$
の上を動くとき、
(1)の四角形の面積$S$の最大値と最小値を求めよ。
$2025$年北海道大学理系過去問題
この動画を見る
$\boxed{2}$
円$C_1:x^2+y^2=1$を考える。
実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、
点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の
接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。
また、座標平面上の原点を$O(0,0)$とする。
(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた
四角形の面積$S$を$p,q$を用いて表せ。
(2)点$P$が楕円
$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$
の上を動くとき、
(1)の四角形の面積$S$の最大値と最小値を求めよ。
$2025$年北海道大学理系過去問題
福田のおもしろ数学440〜正五角形10個でできる図形の内接円と外接円の面積の関係

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正五角形が$10$個円形に並んでいる。
それぞれの正五角形に一辺に
接する内側の円の面積を$1$とするとき、
それぞれの正五角形のひとつの
頂点を通る外側の円の面積を求めて下さい。
図は動画内参照
この動画を見る
正五角形が$10$個円形に並んでいる。
それぞれの正五角形に一辺に
接する内側の円の面積を$1$とするとき、
それぞれの正五角形のひとつの
頂点を通る外側の円の面積を求めて下さい。
図は動画内参照
福田のおもしろ数学435〜正三角形の内部の点の位置から面積を求める

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正三角形$ABC$の内部に
$AP=3,BP=4,CP=5$を満たす点$P$がある。
この正三角形$ABC$の面積を求めよ。
図は動画内参照
この動画を見る
正三角形$ABC$の内部に
$AP=3,BP=4,CP=5$を満たす点$P$がある。
この正三角形$ABC$の面積を求めよ。
図は動画内参照
福田のおもしろ数学433〜四面体に関する計量問題

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
四面体$ABCD$において
$\angle ACB=45°$
$AD+BC+\dfrac{AC}{\sqrt2}=3$
体積$\dfrac{1}{6}$とする。
このとき$CD$を求めよ。
図は動画内参照
この動画を見る
四面体$ABCD$において
$\angle ACB=45°$
$AD+BC+\dfrac{AC}{\sqrt2}=3$
体積$\dfrac{1}{6}$とする。
このとき$CD$を求めよ。
図は動画内参照
【数A】【図形の性質】空間図形の応用3 ※問題文は概要欄

単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
立方体の各面の対角線の交点を頂点とし、
隣り合った面どうしの頂点を結ぶことによって、
立方体の中に正八面体ができる。
このとき、次の場合について、
正八面体の体積を求めよ。
(1) 立方体の1辺の長さが 10
(2) 正八面体の1辺の長さが6
一辺の長さが5の正八角形について、
次のものを求めよ。
(1) 正八角形の体積V
(2) 正八角形に内接する球の半径r
この動画を見る
立方体の各面の対角線の交点を頂点とし、
隣り合った面どうしの頂点を結ぶことによって、
立方体の中に正八面体ができる。
このとき、次の場合について、
正八面体の体積を求めよ。
(1) 立方体の1辺の長さが 10
(2) 正八面体の1辺の長さが6
一辺の長さが5の正八角形について、
次のものを求めよ。
(1) 正八角形の体積V
(2) 正八角形に内接する球の半径r
【数A】【図形の性質】空間図形の応用2 ※問題文は概要欄

単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体ABCD において,辺AB と辺CDが垂直ならば,頂点Aから平面BCDに下ろした垂線AHと,頂点Bから平面CDAに下ろした垂線BKは交わることを示せ。ただし,HとB,KとAはそれぞれ一致しないものとする。
直方体 ABCD-EFGHにおいて,
辺AB,AD,AEの長さをそれぞれa,b,cとする。
また,頂点Aから直線FHに下ろした垂線をAK とする。
このとき,次の問いに答えよ。
(1) EK⊥FHであることを証明せよ。
(2) 垂線AKの長さを求めよ。
この動画を見る
四面体ABCD において,辺AB と辺CDが垂直ならば,頂点Aから平面BCDに下ろした垂線AHと,頂点Bから平面CDAに下ろした垂線BKは交わることを示せ。ただし,HとB,KとAはそれぞれ一致しないものとする。
直方体 ABCD-EFGHにおいて,
辺AB,AD,AEの長さをそれぞれa,b,cとする。
また,頂点Aから直線FHに下ろした垂線をAK とする。
このとき,次の問いに答えよ。
(1) EK⊥FHであることを証明せよ。
(2) 垂線AKの長さを求めよ。
【数A】【図形の性質】空間図形の応用1 ※問題文は概要欄

単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。
正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。
立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
この動画を見る
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。
正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。
立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
【数A】【図形の性質】作図の応用 ※問題文は概要欄

単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。
右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。
右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。
右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。
右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
【数A】【図形の性質】円の位置関係 ※問題文は概要欄

単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。
図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
この動画を見る
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。
図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
福田のおもしろ数学424〜直角二等辺三角形の斜辺を1:2:√3に内分する点がAと作る角が45°になる証明

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
直角二等辺三角形$ABC$で
斜辺$BC$を$1:2:\sqrt3$に
分ける点を順に$D,E$とする。
$\angle DAE=45°$
であることを証明せよ。
図は動画内参照
この動画を見る
直角二等辺三角形$ABC$で
斜辺$BC$を$1:2:\sqrt3$に
分ける点を順に$D,E$とする。
$\angle DAE=45°$
であることを証明せよ。
図は動画内参照
【数A】【図形の性質】円に内接する図形 ※問題文は概要欄

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
円oにおいて、平行な2つの弦をAA´、BB´とし、AB´とA´Bが円の内部の点Pで交わっている。このとき、∠APB=∠AOBであることを証明せよ。
鋭角三角形ABCの垂心をHとし、AHがBCと交わる点をD、△ABCの外接円と交わる点をEとする。このとき、Dは線分HEの中点であることを証明せよ。
下の図において、角θを求めよ。
この動画を見る
円oにおいて、平行な2つの弦をAA´、BB´とし、AB´とA´Bが円の内部の点Pで交わっている。このとき、∠APB=∠AOBであることを証明せよ。
鋭角三角形ABCの垂心をHとし、AHがBCと交わる点をD、△ABCの外接円と交わる点をEとする。このとき、Dは線分HEの中点であることを証明せよ。
下の図において、角θを求めよ。
【数A】【図形の性質】三角形の関係証明 ※問題文は概要欄

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCの内部の1点をPとするとき、AP+BP+CP>1/2(AB+BC+CA)を証明せよ。
上の図において、点Pが線分CD上を動くとき、線分の和AP+PBの最小値とそのときの点Pの位置を求めよ。
この動画を見る
△ABCの内部の1点をPとするとき、AP+BP+CP>1/2(AB+BC+CA)を証明せよ。
上の図において、点Pが線分CD上を動くとき、線分の和AP+PBの最小値とそのときの点Pの位置を求めよ。
【数A】【図形の性質】三角形の辺と角 ※問題文は概要欄

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
∠B=90度の直角三角形ABCの辺BC上に頂点と異なる点Pを取る時、AB<AP<ACであることを証明せよ。
△ABCにおいて、AB>ACとする。∠Aの二等分線と辺BCの交点をPとする時、次の①~④のうちで常に成り立つものを全て選べ。
①BP=PC ②AB>AP ③AC>AP ④AC>CP
次の長さの線分を3辺とする三角形が存在するようなXの値の範囲を求めよ。
(1)X、2、6 (2)3X、X+4、X+2
この動画を見る
∠B=90度の直角三角形ABCの辺BC上に頂点と異なる点Pを取る時、AB<AP<ACであることを証明せよ。
△ABCにおいて、AB>ACとする。∠Aの二等分線と辺BCの交点をPとする時、次の①~④のうちで常に成り立つものを全て選べ。
①BP=PC ②AB>AP ③AC>AP ④AC>CP
次の長さの線分を3辺とする三角形が存在するようなXの値の範囲を求めよ。
(1)X、2、6 (2)3X、X+4、X+2
