図形の性質
図形の性質
【高校数学】 数A-42 メネラウスの定理①

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
ある直線が$\triangle ABC$の辺$BC,CA,AB,$またはその延長と,
それぞれ点$P,Q,R$で交わるとき,$①=1$である.
下の図において,$x$を求めよう.
②
③
図は動画内参照
この動画を見る
ある直線が$\triangle ABC$の辺$BC,CA,AB,$またはその延長と,
それぞれ点$P,Q,R$で交わるとき,$①=1$である.
下の図において,$x$を求めよう.
②
③
図は動画内参照
【高校数学】 数A-41 チェバの定理②

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の図において,$AR:RB$を求めよう.
①
②
図は動画内参照
この動画を見る
次の図において,$AR:RB$を求めよう.
①
②
図は動画内参照
【高校数学】 数A-40 チェバの定理①

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\triangle ABC$の辺$BC,CA,AB$上にそれぞれ点$P,Q,R$があり,
3直線$AP,BQ,CR$が1点で交わるとき,
$①=1$である.
下の図において,$x$を求めよう.
②
③
図は動画内参照
この動画を見る
$\triangle ABC$の辺$BC,CA,AB$上にそれぞれ点$P,Q,R$があり,
3直線$AP,BQ,CR$が1点で交わるとき,
$①=1$である.
下の図において,$x$を求めよう.
②
③
図は動画内参照
【高校数学】 数A-39 傍心と傍接円

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
三角形の1つの①の①と,他の2つの頂点における
②の②は1点で交わる.この点を傍心という.
③$\triangle ABC$の頂点$A$における内角の二等分線と直線$B,C$
それぞれにおける外角の二等分線は1点で交わることを証明しよう.
図は動画内参照
この動画を見る
三角形の1つの①の①と,他の2つの頂点における
②の②は1点で交わる.この点を傍心という.
③$\triangle ABC$の頂点$A$における内角の二等分線と直線$B,C$
それぞれにおける外角の二等分線は1点で交わることを証明しよう.
図は動画内参照
【高校数学】 数A-38 三角形の内心・外心・重心・垂心④

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\triangle ABC$の内心を$I$とし,
直線$AI$と辺$BC$の交点を$D$とする.
$AB=6,BC=%,CA=3$であるとき,$AI:ID$を求めよう.
②平行四辺形$ABCD$において,
辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$E$とする.
このとき,$\triangle BME$の面積と平行四辺形$ABCD$の
面積の比を求めよう.
図は動画内参照
この動画を見る
①$\triangle ABC$の内心を$I$とし,
直線$AI$と辺$BC$の交点を$D$とする.
$AB=6,BC=%,CA=3$であるとき,$AI:ID$を求めよう.
②平行四辺形$ABCD$において,
辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$E$とする.
このとき,$\triangle BME$の面積と平行四辺形$ABCD$の
面積の比を求めよう.
図は動画内参照
【高校数学】 数A-37 三角形の内心・外心・重心・垂心③

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
この動画を見る
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.
②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.
図は動画内参照
【高校数学】 数A-36 三角形の内心・外心・重心・垂心②

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
点$I$を$\triangle ABC$の内心,点$O$を$\triangle ABC$の外心とするとき,
角$x,y$を求めよう.
①
②
③
④
図は動画内参照
この動画を見る
点$I$を$\triangle ABC$の内心,点$O$を$\triangle ABC$の外心とするとき,
角$x,y$を求めよう.
①
②
③
④
図は動画内参照
【高校数学】 数A-35 三角形の内心・外心・重心・垂心①

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
三角形の3つの①の①は1点で交わる.
(この点$I$を中心として,3辺に接する円をかくことができ,
この円を②といい,中心$I$を三角形に内心という.)
三角形の3つの③の③は1点で交わる.
(この点$O$を中心として,3つの頂点を通る円をかくことができ,
この円を④といい,中心$O$を三角形の外心という.)
三角形の3本の⑤は1点で交わる.
(その交点は,それぞれの⑤を⑥に内分する.)
図は動画内参照
この動画を見る
三角形の3つの①の①は1点で交わる.
(この点$I$を中心として,3辺に接する円をかくことができ,
この円を②といい,中心$I$を三角形に内心という.)
三角形の3つの③の③は1点で交わる.
(この点$O$を中心として,3つの頂点を通る円をかくことができ,
この円を④といい,中心$O$を三角形の外心という.)
三角形の3本の⑤は1点で交わる.
(その交点は,それぞれの⑤を⑥に内分する.)
図は動画内参照
【高校数学】 数A-34 内分と外分②

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$△ABC$の$\angle A$の二等分線と辺$BC$の交点を$P$とする.
→$AB:AC=①$
$△ABC(AB\neq AC)$の$\angle A$の外角の二等分線と
辺BCの延長との交点を$Q$とする.
→$AB:AC=②$
$AB=8,BC=6,CA=4$である$△ABC$において,
$\angle A$および外角の二等分線と,
直線$BC$との交点をそれぞれ$D,E$とする.
③線分$BD$の長さを求めよう.
④線分$BE$の長さを求めよう.
図は動画内参照
この動画を見る
$△ABC$の$\angle A$の二等分線と辺$BC$の交点を$P$とする.
→$AB:AC=①$
$△ABC(AB\neq AC)$の$\angle A$の外角の二等分線と
辺BCの延長との交点を$Q$とする.
→$AB:AC=②$
$AB=8,BC=6,CA=4$である$△ABC$において,
$\angle A$および外角の二等分線と,
直線$BC$との交点をそれぞれ$D,E$とする.
③線分$BD$の長さを求めよう.
④線分$BE$の長さを求めよう.
図は動画内参照
【高校数学】 数A-33 内分・外分①

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
線分$AB$において,次の点を記入しよう.
①$3:1$に内分する点$P$
②$1:2$に内分する点$Q$
③$3:1$に外分する点$R$
④$1:4$に外分する点$S$
図は動画内参照
この動画を見る
線分$AB$において,次の点を記入しよう.
①$3:1$に内分する点$P$
②$1:2$に内分する点$Q$
③$3:1$に外分する点$R$
④$1:4$に外分する点$S$
図は動画内参照
【高校数学】 数Ⅰ-100 立体に内接する球

単元:
#数Ⅰ#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右図のように、高さ4、底面の半径$\sqrt{ 2 }$の円錐球Oと側面で接し、底面の中心Mでも接している。
①球Oの体積は?
②球Oの表面積は?
※図は動画内参照
この動画を見る
◎右図のように、高さ4、底面の半径$\sqrt{ 2 }$の円錐球Oと側面で接し、底面の中心Mでも接している。
①球Oの体積は?
②球Oの表面積は?
※図は動画内参照
【高校数学】 数Ⅰ-99 正四面体の切り口

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
この動画を見る
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
【高校数学】 数Ⅰ-98 三角形の内角の二等分線

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
この動画を見る
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
【高校数学】 数Ⅰ-97 内接円と外接円の半径

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎AB=7,BC=8,CA=5の△ABCについて。
①外接円の半径Rは?
②内接円の半径rは?
この動画を見る
◎AB=7,BC=8,CA=5の△ABCについて。
①外接円の半径Rは?
②内接円の半径rは?
【高校数学】 数Ⅰ-96 円に内接する四角形

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。
①線分BDの長さは?
②四角形ABCDの面積は?
この動画を見る
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。
①線分BDの長さは?
②四角形ABCDの面積は?
