約数・倍数・整数の割り算と余り・合同式
難問!!最大公約数と最小公倍数の関係 西武文理
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。
西部学園文理高等学校
この動画を見る
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。
西部学園文理高等学校
整数問題 開明高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
この動画を見る
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
大阪公立大 フェルマーの小定理を利用した証明
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
この動画を見る
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
大阪公立大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
n自然数
$a_n=\frac{5^{2^{n-1}}-1}{2^{n+1}}$
$b_n=\frac{a_{n+1}}{a_n}$
示せ
①$b_n$は整数
②$a_n$は整数
③$a_n$は奇数
この動画を見る
2023大阪公立大学過去問題
n自然数
$a_n=\frac{5^{2^{n-1}}-1}{2^{n+1}}$
$b_n=\frac{a_{n+1}}{a_n}$
示せ
①$b_n$は整数
②$a_n$は整数
③$a_n$は奇数
大阪市立大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
難関中入試に出そうな問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
この動画を見る
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
大阪市立大 奇数の平方の和
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
ナイスな整数問題 富山大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
4次式の整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
中1も挑戦できる整数問題 大阪教育大附属池田
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1から20までの自然数のうち素数であるものの積をA、素数でないものをBとする
AとBの最大公約数は?
大阪教育大学附属高等学校池田校舎
この動画を見る
1から20までの自然数のうち素数であるものの積をA、素数でないものをBとする
AとBの最大公約数は?
大阪教育大学附属高等学校池田校舎
立教大のナイスな問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
この動画を見る
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
立方の差でも平方の和でも表せる素数を探せ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$37=4^3-3^3=1^2+6^2$のように
素数$=b^3-a^3=c^2+d^2$(a,b,c,dは自然数)と表せる
素数を37以外に探せ
この動画を見る
$37=4^3-3^3=1^2+6^2$のように
素数$=b^3-a^3=c^2+d^2$(a,b,c,dは自然数)と表せる
素数を37以外に探せ
整数問題 明治大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
明治大学 過去問
nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
この動画を見る
明治大学 過去問
nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
分数の割り算
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
この動画を見る
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
ラ・サール高校の整数問題
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?
ラ・サール学園
この動画を見る
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?
ラ・サール学園
合同式の基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${3^{3}}^{2023}$を11で割ったあまりは?
この動画を見る
${3^{3}}^{2023}$を11で割ったあまりは?
電卓アプリで遊んでみた
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
この動画を見る
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
5で割ると2余る 桃山学院
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
nは20以下の正の整数で$n^3$を5で割ると2余る。
このような自然数nは何個ある?
桃山学院高等学校
この動画を見る
nは20以下の正の整数で$n^3$を5で割ると2余る。
このような自然数nは何個ある?
桃山学院高等学校
福田の数学〜東北大学2023年理系第4問〜1の5乗根
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
高校生からのDM
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$N=1^n+2^n+3^n+・・・・+2025^n$
Nはn(自然数)の値がいくつでも素数になり得ないことを示せ.
この動画を見る
$N=1^n+2^n+3^n+・・・・+2025^n$
Nはn(自然数)の値がいくつでも素数になり得ないことを示せ.
早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225
早稲田大過去問
この動画を見る
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225
早稲田大過去問
長崎大 複素数と整数の融合問題
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.
長崎大過去問
この動画を見る
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.
長崎大過去問
整数問題!問題文でかなり範囲が絞られている!?さらに候補を絞り込もう!【一橋大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+1} \mathrm{ C }_{k+1}$=$2({}_n \mathrm{ C }_{k-1}+{}_n \mathrm{ C }_{k+1})$
が成り立つような整数の組(n,k)を求めよ。
一橋大過去問
この動画を見る
nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+1} \mathrm{ C }_{k+1}$=$2({}_n \mathrm{ C }_{k-1}+{}_n \mathrm{ C }_{k+1})$
が成り立つような整数の組(n,k)を求めよ。
一橋大過去問
割った余り 愛知淑徳
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数$m,n$が
$3(m+7)=5(n+11)$を満たすとき
$m$を5で割った余りを求めよ
愛知淑徳高等学校
この動画を見る
自然数$m,n$が
$3(m+7)=5(n+11)$を満たすとき
$m$を5で割った余りを求めよ
愛知淑徳高等学校
整数の性質 最小公倍数、最大公約数の基本① 【ゆう☆たろうがていねいに解説】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720
3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。
aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
この動画を見る
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720
3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。
aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
【整数問題】考えられる候補は何パターンだろうか【慶應義塾大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。
慶應義塾大過去問
この動画を見る
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。
慶應義塾大過去問
一工夫必要な不定方程式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数(a,b)の組は何組あるか?
$3ab+4a-b=684$
この動画を見る
自然数(a,b)の組は何組あるか?
$3ab+4a-b=684$
典型的な整数問題!!日大習志野
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$ab+2a+2b =41$のとき
2つの自然数$a,b$を求めよ。($1<a<b$)
日本大学習志野高等学校
この動画を見る
$ab+2a+2b =41$のとき
2つの自然数$a,b$を求めよ。($1<a<b$)
日本大学習志野高等学校
【ガチ良問】素数が絡んだ整数問題の難問です【数学】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pを素数,kを自然数とする。
$12p^{2}+12p+1=k^{2}$を満たすようなpの値を求めよ。
この動画を見る
pを素数,kを自然数とする。
$12p^{2}+12p+1=k^{2}$を満たすようなpの値を求めよ。
千葉大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問
この動画を見る
Pは奇数の素数である.
$N=(P+1)(P+3)(P+5)$
(1)Nは48の倍数であることを示せ.
(2)Nが144の倍数となるPを小さい順に5つ答えよ.
千葉大過去問