ユークリッド互除法と不定方程式・N進法
妙な指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(2+\sqrt3)^{x^2}=(7-4\sqrt3)^{x-4}$
この動画を見る
これを解け.
$(2+\sqrt3)^{x^2}=(7-4\sqrt3)^{x-4}$
どってことない指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
この動画を見る
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
変な指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.これを解け.
①$x^{x^3}=3$
②$x^x=\left(\dfrac{27}{64}\right)^{\frac{27}{64}}$
この動画を見る
$x\gt 0$とする.これを解け.
①$x^{x^3}=3$
②$x^x=\left(\dfrac{27}{64}\right)^{\frac{27}{64}}$
【高校数学】1次不定方程式~どこよりも丁寧に教える~ 5-8【数学A】
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1次不定方程式の分かりやすい解説動画です
この動画を見る
1次不定方程式の分かりやすい解説動画です
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^x-5^x=\sqrt{15^x-25^x}$
この動画を見る
実数解を求めよ.
$3^x-5^x=\sqrt{15^x-25^x}$
ちょっと変わった指数方程式
【高校数学】ユークリッドの互除法の例題2題 5-7.5【数学A】
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
390と273の最大公約数を求めよ
2⃣
31$x$+22$y$=3を満たす整数$x、y$の組を1つ求めよ
この動画を見る
1⃣
390と273の最大公約数を求めよ
2⃣
31$x$+22$y$=3を満たす整数$x、y$の組を1つ求めよ
【高校数学】中学数学で分かるユークリッドの互除法の原理の証明 5-7.5【数学A】
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
中学数学で分かるユークリッドの互除法の原理の証明
この動画を見る
中学数学で分かるユークリッドの互除法の原理の証明
【高校数学】ユークリッドの互除法をどこよりも丁寧に教えます 5-7【数学A】
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
667と299の最大公約数を求めよ
2⃣
31$x$+22$y$=1を満たす整数$x,y$の組を1つ求めよ
この動画を見る
1⃣
667と299の最大公約数を求めよ
2⃣
31$x$+22$y$=1を満たす整数$x,y$の組を1つ求めよ
兵庫医大 普通の基本問題 指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+2}+a^2-3a+4=0$が異なる2つの正の解をもつ$a$の範囲を求めよ.
2019兵庫医大過去問
この動画を見る
$4^x-2^{x+2}+a^2-3a+4=0$が異なる2つの正の解をもつ$a$の範囲を求めよ.
2019兵庫医大過去問
数学「大学入試良問集」【3−6不定方程式②】を宇宙一わかりやすく
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。
この動画を見る
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。
数学「大学入試良問集」【3−5 ユークリッド互除法】を宇宙一わかりやすく
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
自然数$a,b,c,d$に$\displaystyle \frac{b}{a}=\displaystyle \frac{c}{a}+d$の関係があるとき、$a$と$c$が互いに素であれば、$a$と$b$も互いに素であることを証明せよ。
(2)
任意の自然数$n$に対し、$28n+5$と$21n+4$は互いに素であることを証明せよ。
この動画を見る
(1)
自然数$a,b,c,d$に$\displaystyle \frac{b}{a}=\displaystyle \frac{c}{a}+d$の関係があるとき、$a$と$c$が互いに素であれば、$a$と$b$も互いに素であることを証明せよ。
(2)
任意の自然数$n$に対し、$28n+5$と$21n+4$は互いに素であることを証明せよ。
指数方程式を解け
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・2^{\frac{3}{x}}=24$
この動画を見る
これを解け.
$3^x・2^{\frac{3}{x}}=24$
数学「大学入試良問集」【3−4 整数 n進法】を宇宙一わかりやすく
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
7進法で表すと3けたとなる正の整数がある。
これを11進法で表すと、やはり3けたで、数字の順序がもととちょうど反対となる。
このような整数を10進法で表せ。
この動画を見る
7進法で表すと3けたとなる正の整数がある。
これを11進法で表すと、やはり3けたで、数字の順序がもととちょうど反対となる。
このような整数を10進法で表せ。
数学「大学入試良問集」【3−1 整数 不定方程式】を宇宙一わかりやすく
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q,r$は不等式$p \leqq q \leqq r$を満たす正の整数とする。
このとき、次の各問いに答えよ。
(1)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}=1$を満たす$p,q$をすべて求めよ。
(2)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r}=1$を満たす$p,q,r$をすべて求めよ。
この動画を見る
$p,q,r$は不等式$p \leqq q \leqq r$を満たす正の整数とする。
このとき、次の各問いに答えよ。
(1)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}=1$を満たす$p,q$をすべて求めよ。
(2)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r}=1$を満たす$p,q,r$をすべて求めよ。
横浜市立(医)ド・モアブルと7倍角
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)ド・モアブルの定理を用いて$\sin7\theta$を$\sin\theta,\cos\theta$およびその累乗を用いて表せ.
(2)$7x^3-35x^2+21x-1=0$を解け.
(3)$\dfrac{1}{\tan^2\dfrac{\pi}{7}}+\dfrac{1}{\tan^2\dfrac{2\pi}{7}}+\dfrac{1}{\tan^2\dfrac{3\pi}{7}}$の値を求めよ.
2016横浜市立(医)
この動画を見る
(1)ド・モアブルの定理を用いて$\sin7\theta$を$\sin\theta,\cos\theta$およびその累乗を用いて表せ.
(2)$7x^3-35x^2+21x-1=0$を解け.
(3)$\dfrac{1}{\tan^2\dfrac{\pi}{7}}+\dfrac{1}{\tan^2\dfrac{2\pi}{7}}+\dfrac{1}{\tan^2\dfrac{3\pi}{7}}$の値を求めよ.
2016横浜市立(医)
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^{x^2-2\sqrt5 x}=\dfrac{1}{121}$
この動画を見る
実数解を求めよ.
$3^{x^2-2\sqrt5 x}=\dfrac{1}{121}$
方程式 整数解OnlineMathContest
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(m-480)x+4m+97=0$が正整数解のみをもつ整数$m$を求めよ.
この動画を見る
$x^2-2(m-480)x+4m+97=0$が正整数解のみをもつ整数$m$を求めよ.
2021上智大 2つの解法 指数連立方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
真面目な方程式 解は2つ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
この動画を見る
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第4問〜整数の性質
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。
(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$
は
$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。
(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。
条件:$a^2-1$は$h$の倍数である。
よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。
(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。
(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。
(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。
2021共通テスト過去問
この動画を見る
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。
(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$
は
$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。
(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。
条件:$a^2-1$は$h$の倍数である。
よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。
(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。
(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。
(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。
2021共通テスト過去問
2021福岡大(医)指数連立方程式 基本
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 1,y\neq 1,$であり$,\gt 0,y\gt 0$である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}-x^{90}
\end{array}
\right.
\end{eqnarray}$
2021福岡大(医)
この動画を見る
$x\neq 1,y\neq 1,$であり$,\gt 0,y\gt 0$である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}-x^{90}
\end{array}
\right.
\end{eqnarray}$
2021福岡大(医)
【簡単すぎ】4分で不定方程式が得意になります。
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
この動画を見る
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
共通テスト2021年数学詳しい解説〜共通テスト2021年IA第4問〜円周上の点の移動と整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。
(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。
(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として
$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$
と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは
$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$
である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。
(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。
(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。
(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。
(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$
2021共通テスト過去問
この動画を見る
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。
(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。
(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として
$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$
と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは
$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$
である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。
(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。
(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。
(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。
(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$
2021共通テスト過去問
二重根号の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x\geqq 1$である.
$\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2$
この動画を見る
これを解け.$x\geqq 1$である.
$\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2$
【爆速】数学1A解説!!大問4【数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
3rd School
問題文全文(内容文):
数学1A 大問4解説動画です
この動画を見る
数学1A 大問4解説動画です
【超余裕?!】ユークリッドの互除法の本当の姿を見せましょう【高校数学】
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$6$と$4$の最大公約数は?
②$378$と$207$の最大公約数は?
③$27$と$18$の最大公約数は?
④$18$と$9$の最大公約数は?
この動画を見る
①$6$と$4$の最大公約数は?
②$378$と$207$の最大公約数は?
③$27$と$18$の最大公約数は?
④$18$と$9$の最大公約数は?
変な方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x・・・・}}}}=8$
この動画を見る
これを解け.
$x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x・・・・}}}}=8$
3乗根の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.(解3つ)
$\sqrt[3]{x-3}=x-9$
この動画を見る
これを解け.(解3つ)
$\sqrt[3]{x-3}=x-9$
変な方程式(数3不要)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$であり実数であるとき,これを解け.
$10^{x-x^2}=x^x$
この動画を見る
$x\gt 0$であり実数であるとき,これを解け.
$10^{x-x^2}=x^x$