整式の除法・分数式・二項定理

【数Ⅱ】【式と証明】分数式の計算 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。
(1)
(2)
次の式を計算せよ。
(1)
(2)
のとき,
の値を求めよ。
この動画を見る
次の式を計算せよ。
(1)
(2)
次の式を計算せよ。
(1)
(2)
の値を求めよ。
【数Ⅱ】【式と証明】二項定理の活用 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の□に入る数を,二項定理を用いて求めよ。
二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。
(1)
(2) x>0 のとき
この動画を見る
次の□に入る数を,二項定理を用いて求めよ。
二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。
(1)
(2) x>0 のとき
【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶] (2)(2x³-3x)⁵ [x⁹]
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³] (2)(x+y-3z)⁸ [x⁵yz²]
次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数] (2)(2x³-1/3x²)⁵ [定数項]
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶] (2)(2x³-3x)⁵ [x⁹]
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³] (2)(x+y-3z)⁸ [x⁵yz²]
次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数] (2)(2x³-1/3x²)⁵ [定数項]
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
【数Ⅱ】【式と証明】3次式の展開、因数分解、割り算 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(a+b+c)³を展開せよ。
次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³
次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
この動画を見る
(a+b+c)³を展開せよ。
次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³
次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
【数Ⅱ】【式と証明】整式の割り算2 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#模試解説・過去問解説
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の第1式が第2式で割り切れるように、定数 の値を定めよ。
(1) x^3+lx^2+m ,(x+2)^2$
この動画を見る
次の第1式が第2式で割り切れるように、定数
(1)
【数Ⅱ】【式と証明】整式の割り算3 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
で割ると余りが であり、
で割ると余りが である3次式を求めよ。
この動画を見る
【数Ⅱ】【式と証明】整式の割り算1 ※問題文は概要欄

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の各場合について、定数 の値を求めよ。
(1) を で割ると、余りが である。
(2) を で割ると、余りが である。
この動画を見る
次の各場合について、定数
(1)
(2)
大学入試問題#919「昔は落ち着いた問題」

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
のとき、
の値を求めよ。
出典:一橋大(1960)
この動画を見る
出典:一橋大(1960)
#自治医科大学2024#式変形_21#元高校教員

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
のとき
の値を求めよ。
出典:自治医科大学 式変形問題
この動画を見る
出典:自治医科大学 式変形問題
2024年共通テスト徹底解説〜数学ⅡB第1問(2)整式の除法〜福田の入試問題解説

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
整式の剰余

単元:
#数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
が
で割り切れるような整数a,b,cを求めよ
この動画を見る
どっちがでかい

どっちがでかい?

7の2024乗の下4桁

kとk+1ということは・・・【京都大学】【数学 入試問題】

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数 を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
この動画を見る
nとkを自然数とし、整数
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
共テ数学90%取る勉強法

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
整式の剰余

10進数に変換せずに答えを出そう!

分数の中に分数

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
を で割った余りを求めよ
出典:2014年山梨大学 入試問題
この動画を見る
出典:2014年山梨大学 入試問題
【数Ⅱ】二項定理を覚えられない人へ

慶應大 簡単すぎたので1問付け加えてみた

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
を① ,② で割った余り
おまけ
で割った余り
この動画を見る
2023慶応義塾大学過去問題
を①
おまけ
大学入試問題#558 東京帝国大学(1933) #方程式

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
出典:1933年東京帝国大学 入試問題
この動画を見る
出典:1933年東京帝国大学 入試問題
いろんな要素いっぱいの良問 日本医科大

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
を展開したときの の係数を とする。
①
②
日本医科大過去問
この動画を見る
を展開したときの
①
②
日本医科大過去問
福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
を正の整数とし、 次の整式 = を展開して = と表す。
(1)等式 = を示せ。
(2)等式 = ( + +...+ を示せ。
ただし、 , ,..., は二項係数である。
(3)k=1,2,...,nに対して、等式 = を示せ。
2023名古屋大学理系過去問
この動画を見る
(1)等式
(2)等式
ただし、
(3)k=1,2,...,nに対して、等式
2023名古屋大学理系過去問
二項定理 弘前大

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
を展開したときの次数が奇数の項の係数の和を求めよ.
弘前大過去問
この動画を見る
弘前大過去問
福田の数学〜東北大学2023年理系第4問〜1の5乗根

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
実数a= に対して、整式f(x)= - +1を考える。
(1)整式 + + + +1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを とする。 を極形式で表せ。ただし、 =1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数 に対して、 + の値を求めよ。
2023東北大学理系過去問
この動画を見る
(1)整式
(2)方程式f(x)=0の虚数解であって虚部が正のものを
(3)設問(2)の虚数
2023東北大学理系過去問
ただの整式の割り算

福田の数学〜慶應義塾大学2023年看護医療学部第1問(5)〜整式の割り算の余り

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
(5)整式P(x)を
P(x)= =20 +19 +18 +...+2 +
と定める。このとき、P(x)をx-1で割った時の余りは である。
また、P(x)を -1で割った時の余りは である。
2023慶應義塾大学看護医療学部過去問
この動画を見る
P(x)=
と定める。このとき、P(x)をx-1で割った時の余りは
また、P(x)を
2023慶應義塾大学看護医療学部過去問