整式の除法・分数式・二項定理
大学入試問題#919「昔は落ち着いた問題」
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。
出典:一橋大(1960)
この動画を見る
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。
出典:一橋大(1960)
#自治医科大学2024#式変形_21#元高校教員
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$x^{\frac{1}{3}}+x^{-\frac{1}{3}}$のとき
$\displaystyle \frac{x+x^{-1}}{2}$の値を求めよ。
出典:自治医科大学 式変形問題
この動画を見る
$x^{\frac{1}{3}}+x^{-\frac{1}{3}}$のとき
$\displaystyle \frac{x+x^{-1}}{2}$の値を求めよ。
出典:自治医科大学 式変形問題
2024年共通テスト徹底解説〜数学ⅡB第1問(2)整式の除法〜福田の入試問題解説
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
整式の剰余
単元:
#数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ
この動画を見る
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ
どっちがでかい
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$1.11^{111}\ vs\ 1111$
この動画を見る
どっちがでかい?
$1.11^{111}\ vs\ 1111$
どっちがでかい?
単元:
#数Ⅱ#式と証明#指数関数と対数関数#整式の除法・分数式・二項定理#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1.11^{111}$と$1111$どっちが大きい??
この動画を見る
$1.11^{111}$と$1111$どっちが大きい??
7の2024乗の下4桁
kとk+1ということは・・・【京都大学】【数学 入試問題】
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
この動画を見る
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
共テ数学90%取る勉強法
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
整式の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
10進数に変換せずに答えを出そう!
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
11111(7)を6進法で表せ
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
11111(7)を6進法で表せ
\end{eqnarray}
$
分数の中に分数
【数Ⅱ】二項定理を覚えられない人へ
慶應大 簡単すぎたので1問付け加えてみた
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$P(x)=\displaystyle\sum_{n=1}^{20}nx^n=20x^{20}+19x^{19}+$
$\cdots+2x^2+x$
を①$x-1$,②$x^2-1$で割った余り
おまけ
$x^3-1$で割った余り
この動画を見る
2023慶応義塾大学過去問題
$P(x)=\displaystyle\sum_{n=1}^{20}nx^n=20x^{20}+19x^{19}+$
$\cdots+2x^2+x$
を①$x-1$,②$x^2-1$で割った余り
おまけ
$x^3-1$で割った余り
大学入試問題#558 東京帝国大学(1933) #方程式
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ x+1 }+\sqrt{ x-1 }}{\sqrt{ x+1 }-\sqrt{ x-1 }}=\displaystyle \frac{4x-1}{2}$
出典:1933年東京帝国大学 入試問題
この動画を見る
$\displaystyle \frac{\sqrt{ x+1 }+\sqrt{ x-1 }}{\sqrt{ x+1 }-\sqrt{ x-1 }}=\displaystyle \frac{4x-1}{2}$
出典:1933年東京帝国大学 入試問題
いろんな要素いっぱいの良問 日本医科大
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$
日本医科大過去問
この動画を見る
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$
日本医科大過去問
福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。
2023名古屋大学理系過去問
この動画を見る
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。
2023名古屋大学理系過去問
二項定理 弘前大
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+x)^n$を展開したときの次数が奇数の項の係数の和を求めよ.
弘前大過去問
この動画を見る
$(1+x)^n$を展開したときの次数が奇数の項の係数の和を求めよ.
弘前大過去問
福田の数学〜東北大学2023年理系第4問〜1の5乗根
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
ただの整式の割り算
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(3x^3-4x^2+10x+4)^2$を$x^2-2x+4$で割ったあまりを求めよ.$
この動画を見る
$(3x^3-4x^2+10x+4)^2$を$x^2-2x+4$で割ったあまりを求めよ.$
福田の数学〜慶應義塾大学2023年看護医療学部第1問(5)〜整式の割り算の余り
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)整式P(x)を
P(x)=$\displaystyle\sum_{n=1}^{20}nx^n$=20$x^{20}$+19$x^{19}$+18$x^{18}$+...+2$x^2$+$x$
と定める。このとき、P(x)をx-1で割った時の余りは$\boxed{\ \ ク\ \ }$である。
また、P(x)を$x^2$-1で割った時の余りは$\boxed{\ \ ケ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
この動画を見る
$\Large\boxed{1}$ (5)整式P(x)を
P(x)=$\displaystyle\sum_{n=1}^{20}nx^n$=20$x^{20}$+19$x^{19}$+18$x^{18}$+...+2$x^2$+$x$
と定める。このとき、P(x)をx-1で割った時の余りは$\boxed{\ \ ク\ \ }$である。
また、P(x)を$x^2$-1で割った時の余りは$\boxed{\ \ ケ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。
2023早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。
2023早稲田大学理工学部過去問
【短時間でマスター!!】二項定理と多項定理を解説!〔現役塾講師解説、数学〕
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学2B
二項定理・多項定理
$(3x-1)^7$を展開したときに$x^2$の係数は?
$(x^2-2y+3z)^6$の$x^3y^2z$の係数は?
この動画を見る
数学2B
二項定理・多項定理
$(3x-1)^7$を展開したときに$x^2$の係数は?
$(x^2-2y+3z)^6$の$x^3y^2z$の係数は?
【短時間でマスター!!】二項定理を解説!〔現役塾講師解説、数学〕
【高校数学】分数式の恒等式~どこよりも分かりやすく丁寧に~ 1-7.5【数学Ⅱ】
福田の数学〜京都大学2023年理系第1問(2)〜整式の割り算と余り
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問2 整式$x^{2023}$-1 を整式$x^4$+$x^3$+$x^2$+$x$+1 で割った時の余りを求めよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{1}$ 問2 整式$x^{2023}$-1 を整式$x^4$+$x^3$+$x^2$+$x$+1 で割った時の余りを求めよ。
2023京都大学理系過去問
福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。
2023東京大学理系過去問
この動画を見る
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。
2023東京大学理系過去問