解と判別式・解と係数の関係
福田の1日1題わかった数学〜高校2年生第2回〜高次方程式と整数解
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
この動画を見る
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
福田の1日1題わかった数学〜高校2年生第1回〜高次方程式
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
この動画を見る
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
解の公式の利用 A 2021専大松戸
単元:
#数学(中学生)#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)
2021専修大学松戸高等学校
この動画を見る
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)
2021専修大学松戸高等学校
【数Ⅱ】複素数と方程式:2x²-6x-3=0の解がα、βのとき、①β²/α+α²/β②(2α²-6α-5)(2β²-6β-1)の値を求めよ。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。
この動画を見る
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。
【数Ⅱ】複素数と方程式:3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3次方程式$x^3-x^2+2x-3=0$の3つの解を$\alpha,\beta,y$とするとき、次の式の値を求めよう。
(1)$\alpha^2+\beta^2+y^2$
(2)$\alpha^3+\beta^3+y^3$
(3)$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{y}$
(4)$(1-\alpha)(1-\beta)(1-y)$
この動画を見る
3次方程式$x^3-x^2+2x-3=0$の3つの解を$\alpha,\beta,y$とするとき、次の式の値を求めよう。
(1)$\alpha^2+\beta^2+y^2$
(2)$\alpha^3+\beta^3+y^3$
(3)$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{y}$
(4)$(1-\alpha)(1-\beta)(1-y)$
10東京都教員採用試験(数学:1-(1) 解と係数の関係)
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
この動画を見る
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
【難問解説】「解と係数の関係」と「判別式」を利用した最大・最小問題【半分 for you 動画】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
「解と係数の関係」と「判別式」を利用した最大・最小問題
-----------------
実数$x、y、z$は$x+y+z=0,x^2-x-1=yz$を満たす。
$x^3+y^3+z^3$のn最大値・最小値と、そのときの$x$の値を求めよ。
この動画を見る
「解と係数の関係」と「判別式」を利用した最大・最小問題
-----------------
実数$x、y、z$は$x+y+z=0,x^2-x-1=yz$を満たす。
$x^3+y^3+z^3$のn最大値・最小値と、そのときの$x$の値を求めよ。
18神奈川県教員採用試験(数学:6番 解と係数の関係)
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
6⃣$x^3+kx^2+2x+10=0$の解がx=-2、α、βのとき、$α^2+β^2$の値を求めよ。
この動画を見る
6⃣$x^3+kx^2+2x+10=0$の解がx=-2、α、βのとき、$α^2+β^2$の値を求めよ。
【数Ⅱ】複素数と方程式:3次方程式が異なる3つの解を持つ条件:方程式x³+(a-1)x-a=0が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
式の値
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
光文社新書「中学の知識でオイラー公式がわかる」Vol14
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2=9$
$(x-2)^2=25$
$x^2=5$
$(x+3)^2=2$
この動画を見る
$x^2=9$
$(x-2)^2=25$
$x^2=5$
$(x+3)^2=2$
横浜市立(医)3項間漸化式 良問再投稿
単元:
#数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$
出典:2016年横浜市立大学 医学部 過去問
この動画を見る
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$
出典:2016年横浜市立大学 医学部 過去問
防衛医大 複素数の計算
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$
$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$
$\gamma^3$の値を求めよ
出典:2011年防衛医科大学校 過去問
この動画を見る
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$
$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$
$\gamma^3$の値を求めよ
出典:2011年防衛医科大学校 過去問
お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。
単元:
#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
この動画を見る
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:お茶の水女子大学 過去問訂正版
東北大 3次方程式 整数解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-(p-3)x^2-3x+p-1=0$の3つの解がすべて整数となるような実数$p$を求めよ
出典:2000年東北大学 過去問
この動画を見る
$x^3-(p-3)x^2-3x+p-1=0$の3つの解がすべて整数となるような実数$p$を求めよ
出典:2000年東北大学 過去問
【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
この動画を見る
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
神戸大 虚数解を持つ3次方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+ax^2+bx+c=0$
$a,b,c$は整数
1つの解は$\displaystyle \frac{3+\sqrt{ 7 }i}{2}$
$0 \leqq x \leqq 1$に1つの実数解をもつ$(a,b,c)$の組すべて求めよ
出典:神戸大学 過去問
この動画を見る
$x^3+ax^2+bx+c=0$
$a,b,c$は整数
1つの解は$\displaystyle \frac{3+\sqrt{ 7 }i}{2}$
$0 \leqq x \leqq 1$に1つの実数解をもつ$(a,b,c)$の組すべて求めよ
出典:神戸大学 過去問
名古屋大 根号の計算 4次方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ
(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ
(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解
出典:1975年名古屋大学 過去問
この動画を見る
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ
(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ
(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解
出典:1975年名古屋大学 過去問
京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?
出典:2008年京都大学 過去問
この動画を見る
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?
出典:2008年京都大学 過去問
東京理科大 3次方程式 解と係数 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
この動画を見る
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
京都大 4次方程式 虚数解 Mathematics Japanese university entrance exam Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
この動画を見る
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
茨城大 Mathematics Japanese university entrance exam
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
茨城大学過去問題
$n \geqq 2$ 整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
この動画を見る
茨城大学過去問題
$n \geqq 2$ 整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
この動画を見る
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
【高校数学】2次方程式②~判別式とは~数学界のDの意思を継ぐもの 2-8【数学Ⅰ】
慶應義塾 三次方程式 解と係数の関係 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
この動画を見る
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。