剰余の定理・因数定理・組み立て除法と高次方程式
横浜市立(医)3次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.
1973年横浜市立(医)過去問
この動画を見る
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.
1973年横浜市立(医)過去問
ただの4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+3x+2)(x^2+9x+18)=168x^2$
この動画を見る
これを解け.
$(x^2+3x+2)(x^2+9x+18)=168x^2$
成蹊大2021 3次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
この動画を見る
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
千葉大(医)2018
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{9}\pi +i\sin\dfrac{2}{9}$
①$\alpha=z+z^8$
$\alpha$を解にもつ整数係数の3次方程式を求めよ.
②①の方程式の他の2つの解を$\alpha$の2次方程式で求めよ.
2018千葉大(医)過去問
この動画を見る
$Z=\cos \dfrac{2}{9}\pi +i\sin\dfrac{2}{9}$
①$\alpha=z+z^8$
$\alpha$を解にもつ整数係数の3次方程式を求めよ.
②①の方程式の他の2つの解を$\alpha$の2次方程式で求めよ.
2018千葉大(医)過去問
方程式が解をもたないとき
単元:
#数学(中学生)#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの方程式ax+3=2x-aが解をもたないときa=?
仙台育英学園高等学校
この動画を見る
xの方程式ax+3=2x-aが解をもたないときa=?
仙台育英学園高等学校
福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}
2021上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}
2021上智大学文系過去問
3次方程式 解と係数の関係
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
この動画を見る
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
昭和(医) 華麗な解法
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ3次方程式を求めよ.
3次の係数は1である.
昭和大(医)過去問
この動画を見る
$x^3-3x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ3次方程式を求めよ.
3次の係数は1である.
昭和大(医)過去問
【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
3乗根の方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
この動画を見る
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り
(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.
(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.
2021中央大理工学部過去問
この動画を見る
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り
(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.
(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.
2021中央大理工学部過去問
福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
東京医科大(類題)4次方程式の解の4乗の和
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4-2x^3+3x^2-4x+1=0$の4つの解を$\alpha,\beta,\zeta \delta$とする.
$\alpha^4+\beta^4+\zeta^4+\delta^4$の値を求めよ.
東京医科大(類題)過去問
この動画を見る
$x^4-2x^3+3x^2-4x+1=0$の4つの解を$\alpha,\beta,\zeta \delta$とする.
$\alpha^4+\beta^4+\zeta^4+\delta^4$の値を求めよ.
東京医科大(類題)過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(6)〜高次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 2(\cos\theta-\sin\theta)^2=1 を満たす\thetaを0 \leqq \theta \leqq \pi の範囲で求めると\ \boxed{\ \ イ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 2(\cos\theta-\sin\theta)^2=1 を満たす\thetaを0 \leqq \theta \leqq \pi の範囲で求めると\ \boxed{\ \ イ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+6x+1)(x^2+5x)=2(x+1)^2$
この動画を見る
これを解け.
$(x^2+6x+1)(x^2+5x)=2(x+1)^2$
ガウス記号 剰余
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$\left[\dfrac{4^n}{5}\right]$を$6$で割った余りを求めよ.
この動画を見る
$n$を自然数とする.
$\left[\dfrac{4^n}{5}\right]$を$6$で割った余りを求めよ.
佐賀大(医)3次方程式の解の公式その2
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.
佐賀大(医)過去問
この動画を見る
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.
佐賀大(医)過去問
佐賀大(医)3次方程式の解の公式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha,\beta$は正の実数である.
(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.
(2)$x^3+6x-2=0$の実数解を求めよ.
2020佐賀大(医)過去問
この動画を見る
$\alpha,\beta$は正の実数である.
(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.
(2)$x^3+6x-2=0$の実数解を求めよ.
2020佐賀大(医)過去問
連立3元3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3=xyz+1\\y^3=xyz+2 \\
z^3=xyz-3
\end{array}
\right.
\end{eqnarray}$
この動画を見る
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3=xyz+1\\y^3=xyz+2 \\
z^3=xyz-3
\end{array}
\right.
\end{eqnarray}$
福田の数学〜早稲田大学2021年教育学部第1問〜高次方程式の実数解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。
2021早稲田大学教育学部過去問
この動画を見る
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。
2021早稲田大学教育学部過去問
3秒で答え出ます(剰余の定理)数II 割った余り
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$3x^2-2x+1$をx-1で割った余りは?
この動画を見る
$3x^2-2x+1$をx-1で割った余りは?
ざ・見掛け倒し 何次方程式?
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$f(x)=x^2+6x+6$
$f(f(f(f(f(x)))))=0$
この動画を見る
実数解を求めよ.
$f(x)=x^2+6x+6$
$f(f(f(f(f(x)))))=0$
ちょっと工夫 連立三元方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+xy=26\\y+z+yz=41 \\
z+x+zx=125
\end{array}
\right.
\end{eqnarray}$
この動画を見る
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+xy=26\\y+z+yz=41 \\
z+x+zx=125
\end{array}
\right.
\end{eqnarray}$
3次方程式の解の7乗の和
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^7+\beta^7+\delta^7$の値を求めよ.
この動画を見る
$x^3-x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^7+\beta^7+\delta^7$の値を求めよ.
高校入試だけど3次方程式 動画内に誘導あり! 徳島文理(改)
単元:
#数学(中学生)#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^3+a^2-a-1$を因数分解
$(x+1)^3+(x+1)^2-x-2=0$を解け
徳島文理高等学校
この動画を見る
$a^3+a^2-a-1$を因数分解
$(x+1)^3+(x+1)^2-x-2=0$を解け
徳島文理高等学校
方程式を解け。
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^{x^{2}}=2x^2$を解け
(x:実数)
この動画を見る
$2^{x^{2}}=2x^2$を解け
(x:実数)