図形と方程式 - 質問解決D.B.(データベース) - Page 10

図形と方程式

千葉大 三次関数と円 東大数学科卒の杉山さん

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#円と方程式#指数関数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
曲線$y=x^3-x$と円$(x-a^2)+(y-a)^2=2a^2$の共有点が2つ
共有点の$x$座標は?
$(a \gt 0)$

出典:千葉大学 過去問
この動画を見る 

数学諦めて7年!私文数学超苦手女子が2点を通る直線の式が暗算数秒で出せるのか?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の式 解説動画です
この動画を見る 

名古屋市立(医) 関数 微分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$

(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ

(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$

出典:1995年名古屋市立大学 医学部 過去問
この動画を見る 

東北大 円の方程式 領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
領域$D$は次の連立不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-6x+y^2+5 \leqq 0 \\
x+y \leqq 5
\end{array}
\right.
\end{eqnarray}$

$x^2+y^2-2ax-2y+a^2=0$が$D$を通るような$a$の最大値と最小値を求めよ

出典:2006年東北大学 過去問
この動画を見る 

【数Ⅱ】図形と方程式:点と直線の距離(最小値):平面上の2点をA(1,1),B(2,3)とする。点Pが放物線y=x²+4x+10上を動くとき△PABの面積の最小値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の2点をA(1,1),B(2,3)とする。点Pが放物線$y=x^2+4x+10$上を動くとき△PABの面積の最小値を求めよ。
この動画を見る 

信州大(医)多項式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
この動画を見る 

【マイナス】の捉え方は【世界】を変える

アイキャッチ画像
単元: #数Ⅱ#物理#図形と方程式#点と直線#円と方程式#力学#数学(高校生)#理科(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
相対速度 円の方程式、直線の方程式まとめ動画です
この動画を見る 

自治医科大 円の方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ

出典:2008年自治医科大学 過去問
この動画を見る 

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
この動画を見る 

福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(11)証明問題への領域の利用、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。

${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1     \cdots③\\
\end{array}
\right.
\end{eqnarray}$

このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(10)対称式の問題(その2)京都大学の問題に挑戦、高校2年生

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2+x+y$
が取り得る値の範囲を求めよ。
この動画を見る 

福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(8)直線の通過領域(実践編2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\theta$が任意の実数を動くとき、直線$\ell:(\cos\theta)\ x+(\sin\theta)\ y=1$
の通過する領域を図示せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(7)直線の通過領域(実践編)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が$0 \leqq m \leqq 1$の範囲を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(6)直線の通過領域(基本)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(5)正領域・負領域、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$O(0,0),A(1,2)$に対し、次の問いに答えよ。
(1)線分$OA$と直線$y=ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
(2)線分$OA$と放物線$y=x^2+ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(4)領域における最大最小、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 不等式$-1 \leqq y-x \leqq 1,$ $-1 \leqq x+y \leqq 1$ を満たす$x,y$に対して
(1)$x^2+y^2-3x-2y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$\displaystyle \frac{y}{x+2}$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$xy$ の最大値とそのときの$x,y$を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(3)領域における最大最小を本当に理解する、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(2)複雑なな領域の図示、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
$1 \lt ||x|-2|+||y|-2| \lt 5$ $\cdots$①
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(1)基本的な領域の図示、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の領域を図示せよ。
(1)$y \gt \frac{1}{x}$

(2)$xy \gt 1$

(3)$\begin{eqnarray}
\left\{
\begin{array}{l}
y \gt 3x-5 \\
x^2+y^2 \lt 25
\end{array}
\right.
\end{eqnarray}$

(4)$x(x^2-y^2)(x^2+y^2-2)(x^2-y) \gt 0$

(5)$|x|+|y| \leqq 1$
この動画を見る 

東京学芸大 不等式の範囲 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#東京学芸大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京学芸大学過去問題
x,yが$(2x-y-2)^2(x-y+1)\leqq 0$と$x^2+y^2<4$をみたすとき、y-xのとる値の範囲を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(7)切り取られる弦の中点の軌跡(後編)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(6)切り取られる弦の中点の軌跡(前編)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(4)2直線の交点の軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$y+k(x-2)=0$ $\cdots$①,$ky-(x+2)=0$ $\cdots$② について
(1)$k$が全ての実数値を取るとき、①②の交点の軌跡を求めよ。
(2)$0 \lt k \lt 1$の範囲をkが動くとき、①②の交点の軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(5)動点が2個ある場合の軌跡、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
この動画を見る 

早稲田 学習院 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
$x^3+y^3=3xy$ (x,y実数)
x+yのとりうる範囲

早稲田大学過去問題
$a_1$~$a_n$整数
$x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_{n-1}x+a_n=0$
整数係数のn次方程式、解が有理数ならその解は整数である。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。

(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)

(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(2)アポロニウスの円、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
この動画を見る 
PAGE TOP